
	

	 D1.5	VICINITY	technical	requirements	specification	 	

	 	

	
Public	

	

	

	
	

	

Project	Acronym:	 VICINITY	

Project	Full	Title:	 Open	 virtual	 neighbourhood	 network	 to	 connect	 intelligent	
buildings	and	smart	objects	

Grant	Agreement:	 688467	

Project	Duration:	 48	months	(01/01/2016	-	31/12/2019)	

Deliverable	D1.5	

VICINITY	technical	requirements	specification	

	

Work	Package:	 WP1	 –	 VICINITY	 concept	 Requirements,	 Barriers,	 Specification	 and	
Architecture	

Task(s):	 T1.4	–	Functional	&	Technical	Specification,	Architectural	design	

Lead	Beneficiary:	 BVR	

Due	Date:	 31	December	2017	(M12)	

Submission	Date:	 31	December	2017	(M12)	

Deliverable	Status:	 Draft	

Deliverable	Type:	 R	

Dissemination	Level:	 PU	

File	Name:	 VICINITY_D1_5_Technical_requirements_specification_1.0.pdf	

	 	

	

	 D1.5	VICINITY	technical	requirements	specification	 2	

	 	

	
Public	

	

	

VICINITY	Consortium		

No	 Beneficiary	 	 Country	

1. 	 TU	Kaiserslautern	(Coordinator)	 UNIKL	 Germany	

2. 	 ATOS	SPAIN	SA	 ATOS	 Spain	

3. 	 Centre	for	Research	and	Technology	Hellas	 CERTH	 Greece	

4. 	 Aalborg	University		 AAU	 Denmark	

5. 	 GORENJE	GOSPODINJSKI	APARATI	D.D.	 GRN	 Slovenia	

6. 	 Hellenic	Telecommunications	Organization	S.A.	 OTE	 Greece	

7. 	 bAvenir	s.r.o.	 BVR	 Slovakia	

8. 	 Climate	Associates	Ltd		 CAL	 United	Kingdom	

9. 	 InterSoft	A.S.		 IS	 Slovakia	

10. 	 Universidad	Politécnica	de	Madrid	 UPM	 Spain	

11. 	 Gnomon	Informatics	S.A.	 GNOMON	 Greece	

12. 	 Tiny	Mesh	AS		 TINYM	 Norway	

13. 	 HAFENSTROM	AS		 HITS	 Norway	

14. 	 Enercoutim	–	Associação	Empresarial	de	Energia	Solar	de	
Alcoutim	

ENERC	 Portugal	

15. 	 Municipality	of	Pylaia-Hortiatis	 MPH	 Greece	
	 	

	

	 D1.5	VICINITY	technical	requirements	specification	 3	

	 	

	
Public	

	

	

Authors	List	

Leading	Author	(Editor)	

Surname	 First	Name	 Beneficiary	 Contact	email	

Oravec	 Viktor	 BVR	 viktor.oravec@bavenir.eu		

Co-authors	(in	alphabetic	order)	

No	 Surname	 First	Name	 Beneficiary	 Contact	email	

1. 	 Sveen	 Flemming	 HITS	 flsveen@online.no	

2. 	 Myncasova	 Aida	 UNIKL	 limit6715@gmail.com	

3. 	 Tryferidis	 Athanasios	 CERTH	 thanasic@iti.gr		

4. 	 Paralic	 Marek	 IS	 marek.paralic@intersoft.sk		

5. 	 Serena	 Fernando	 UPM	 fserena@fi.upm.es		

6. 	 Kaggelides	 Kostis	 GNOMON	 k.kaggelides@gnomon.com.gr		

7. 	 Vanya	 Stefan	 BVR	 stefan.vanya@bavenir.eu		

	

Reviewers	List	

List	of	Reviewers	(in	alphabetic	order)	

No	 Surname	 First	Name	 Beneficiary	 Contact	email	

1.	 Wall	(Coordinator)	 Nigel	 CAL	 nw@nigel-wall.co.uk		

2.	 Mach	 Marian	 IS	 Marian.Mach@tuke.sk	

3.	 Margariti	 Katerina	 CERTH	 kmargariti@iti.gr		

4.	 Gato	 Jose	 Atos	 jose.gato@atos.com		

5.	 Vinkovic		 Saso	 Gorenje	 Saso.Vinkovic@gorenje.com	

	 	

	

	 D1.5	VICINITY	technical	requirements	specification	 4	

	 	

	
Public	

	

	

	

Revision	Control	

Version	 Date	 Status	 Modifications	made	by	

0.1	 6.	June	2016	(M6)	 Initial	Draft	 Oravec	(BVR)	

0.2	 7.	June	2016	 Overall	functional	specification	 Oravec	(BVR)	

0.3	 15.	June	2016	 Finalization	of	TOC	 Oravec	(BVR)	

0.4	 25.	June	2016	 UC0100	Description	added	 Oravec	(BVR)	

0.5	 5.	July	2016	 UC0200	Description	added	 Oravec	(BVR)	

0.6	 13.	July	2016	 UC0300	Description	added	 Oravec	(BVR)	

0.7	 26.	July	2016	 UC004	Description	added	 Oravec	(BVR)	

0.8	 9.	August	2016	 Draft	 of	 availability	
requirements	

Oravec	(BVR)	

0.9	 10.	October	 List	of	use	cases	finalized	 Oravec	(BVR)	

0.10	 30.	October	 Non-functional	 requirements	
drafted	

Oravec	(BVR)	

0.11	 30.	November	 Non-functional	 requirements	
finalized	

Oravec	(BVR)	

0.12	 6.	December	2016	 Quality	Check	 Oravec	(BVR)	

0.13	 20.	December	2016	 Consolidated	QaR	 Oravec	(BVR)	

0.14	 28.	December	2016	 Final	Draft	reviewed	 Oravec	(BVR)	

1.0	 30.	December	2016	 Submission	to	the	EC	 Oravec	(BVR)	

	 	

	

	 D1.5	VICINITY	technical	requirements	specification	 5	

	 	

	
Public	

	

	

Table	of	Contents	
 Executive Summary ... 8
 Introduction ... 9

 Deliverable objectives .. 9
 Relation to other Tasks and Deliverables .. 10

 Approach ... 11
 Methodology ... 11
 UML Design ... 13

 VICINITY functional design .. 15
 UC 0100 – Interoperability setup ... 16
 UC 0200 – Device register and discovery .. 21
 UC 0300 – Deploy value added services .. 23
 UC 0400 – Connecting VICINITY ... 25
 Common and supporting use cases .. 27
 List of actors and use cases ... 35

 VICINITY Interoperability platform requirements .. 38
 Functional requirements ... 38
 Quality considerations and non-functional requirements 46
 Value added services requirements ... 64

 Conclusion .. 67
ANNEX I Example of Open source licenses .. 68
	 	

	

	 D1.5	VICINITY	technical	requirements	specification	 6	

	 	

	
Public	

	

	

List	of	Tables	
Table 1 List of requirements groups ... 13
Table 2 List of actors .. 15
Table 3 List of supportive actors .. 28
Table 4 List of actors and associated use cases ... 35
Table 5 List of Open source licenses ... 68
	

	

List	of	Figures	
Figure 1 Relation of technical requirements specification with other type of requirements 11
Figure 2 Relation upper level requirements and technical requirements 12
Figure 3 Example of the technical use case diagram .. 14
Figure 5 Main VICINITY Actors and technical use cases .. 15
Figure 6 UC 0100 – Interoperability setup ... 16
Figure 7 UC 0110 – Create partnership with other organization .. 17
Figure 8 UC 0130 – Request to access IoT Device ... 18
Figure 9 UC 0150 - Request to access value added service ... 20
Figure 10 UC 0200 – Device register and discovery .. 21
Figure 11 UC 0300 – Deploy value added services ... 23
Figure 12 UC 0400 - Connecting VICINITY .. 25
Figure 13 Relation between actors ... 28
Figure 14 UC LEG000 – Legal ... 28
Figure 15 UC SEC000 – Security .. 29
Figure 16 UC PRV000 – Privacy .. 31
Figure 17 UC GRP000 – IoT devices and value added services grouping 31
Figure 18 UC COM000 – Organization and user management .. 32
Figure 19 UC SRC010 – Search in VICINITY ... 34
Figure 20 UC NTF010 - User notifications ... 34

	

	

	 D1.5	VICINITY	technical	requirements	specification	 7	

	 	

	
Public	

	

	

List	of	Definitions	&	Abbreviations	

Abbreviation	 Definition	

BSD	 Berkeley	Software	Distribution	

CPU	 Central	Processing	Unit	

DNS	 Domain	Name	Service	

EC	 European	Commission	

EU	 European	Union	

GDPR General	data	protection	regulation	

GPL	 Public	License	

HTTP	 Hypertext	transport	protocol	

HW	 Hardware	

ICT	 Information	and	communications	technology

IoT Internet	of	things	

ITU	
United	 Nations	 specialized	 agency	 for	 information	 and	 communication	
technologies

MIT	 Massachusetts	Institute	of	Technology

PaaS Platform	as	a	Service	

SRC	 Source	code

SSH	 Secure	shell

TLS	 Transport	layer	security

TM Trademark	

UC Use	case	

UML	 Unified	Mark-up	Language

URI	 Uniform	Resource	Identifier

WP	 Work	package

	 	

	

	 D1.5	VICINITY	technical	requirements	specification	 8	

	 	

	
Public	

	

	

 Executive	Summary	
This	document	“D1.5	VICINITY	Technical	requirements	and	specification”	directly	addresses	Objective	
2.4	„VICINITY	Technical	requirements	and	solution	architecture	specified“,	in	terms	of	specifying	set	of	
required	functions	and	quality	features	that	will	be	provided	by	the	VICINITY	interoperability	platform.	
These	key	 required	 functions	and	quality	 features	are	defined	based	on	 stakeholders’	barriers	 and	
drivers,	end-user	business	expectations	and	operational	needs	identified	from	pilot	site	locations.	

The	key	VICINITY	functions	are:	

• interoperability	 set-up	 in	 virtual	 neighbourhood	 with	 value	 added	 service	 and	 IoT	 device	
granularity	enabling	devices	owners,	service	providers	and	integrated	infrastructure	operators	
to	control	access	to	their	assets;	

• connecting	 IoT	 platforms	 into	 virtual	 neighbourhood	 using	 VICINITY	 Agents	 (provided	 by	
VICINITY	out	of	the	box	for	selected	IoT	software	platforms)	or	VICINITY	Adapters	(VICINITY	
Open	interoperability	gateway	API	and	set	of	libraries	will	be	provided	for	proprietary	or	closed	
IoT	software	platforms);	

• facilitation	of	exchange	data	within	the	virtual	neighbourhood	using	semantic	interoperability	
in	controlled,	secure	and	privacy	preserving	way;	

The	 VICINITY	 quality	 features	 focus	mainly	 on	 user	 experience,	 trust,	 privacy,	 security,	 scalability,	
standardization.	VICINITY	functions	are	designed	around	user	(even	technical	personnel	in	charge	of	
set-up	 integration	 to	 VICINITY)	 to	 ensure	 as	 best	 as	 possible	 user	 experience	 during	 installation,	
configuration,	 integration	 of	 VICINITY	 components	 in	 her	 infrastructure	 and	 usage	 VICINITY	
interoperability	features.	

The	VICINITY	trust,	privacy	and	security	features	are	mainly	build	on:	

• supporting	of	various	type	of	verifiable	identities	of	VICINITY	users,	value-added	service	and	
IoT	devices;	

• end-to-end	security	and	authenticity	of	exchanged	data	within	neighbourhood;	
• access	 to	 value-added	 services	 and	 IoT	 devices	 controlled	 by	 service	 providers	 and	 device	

owner;	
• preserving	privacy	based	on	separation	of	meta-data	from	actual	data;	
• private	 data	 processing	 consents	 to	 control	 processing	 of	 these	 data	 within	 the	

neighbourhood;	
• supporting	privacy	features	introduced	by	“EC	Regulation	2016/679“,	the	most	notably	private	

data	rectification,	process	restriction	and	erasure.	

The	high-availability	and	performance	quality	measures	enable	VICINITY	to	scale-up	and	scale-out	to	
handle	various	communication	load	within	neighbourhoods	introduced	by	different	applications	from	
building,	energy,	transport	and	health	domain.	

The	VICINITY	maintainability	features,	which	enable	configure,	extend,	update	and	adjust	VICINITY	to	
constantly	 changing	 environment,	 are	 built	 upon	 standardization	 on	 the	 level	 of	 communication	
interfaces,	communication	protocols,	ontologies	and	technologies	selected,	design	and	architecture	
patterns	applied.	

The	VICINITY	Technical	requirements	specification	together	architecture	(see	D1.6	deliverable)	defines	
the	 base	 line	 for	 the	 following	 implementation	 of	 VICINITY	 components	 including	 web-based	
neighbourhood	manager,	semantic	interoperability	gateway,	trust,	security	and	privacy	services.	

	

	 D1.5	VICINITY	technical	requirements	specification	 9	

	 	

	
Public	

	

	

 Introduction	
This	 document	 provides	 the	 technical	 requirements	 as	 developed	within	 “Task	 1.4	 –	 Functional	 &	
Technical	Specification,	Architectural	design”.	The	architectural	design	will	be	covered	by	D1.6.	

This	document	defines:	

• Functional	design	of	the	VICINITY	solution;	
• Set	of	non-functional	requirements	and	quality	considerations.	

This	document	does	not	define:	

• Detailed	design	of	the	VICINITY	solution;	
• Functional	requirement	of	value	added	services,	integrated	IoT	infrastructures	and	IoT	devices;	
• Testing,	validation	and	evaluation	topics;	
• Implementation	management	plan.	

The	relevant	tasks	(from	which	technical	requirements	specification	is	derived)	are	as	follows:	

• Task	1.1	–	Elicitation	of	user	requirements	and	barriers	related	to	IoT	interoperability;	
• Task	1.2	–	Pilot	Sites	Surveys	and	extraction	of	Use	Case	requirements;	
• Task	1.3	–	VICINITY	Platform	User	and	Business	Requirement	Definition;	
• Task	2.1	–	Analysis	of	available	platforms,	IoT	infrastructures,	IoT	ontologies	and	standards.	

Thus,	it	is	suggested	that	readers	should	be	familiar	with	and	have	access	to	the	following	deliverables:	

• D1.1	VICINITY	requirement	capture	framework;	
• D1.2	Report	on	business	drivers	and	barriers	of	IoT	interoperability	and	value	added	services;	
• D1.3	Report	on	pilot	sites	and	operational	requirements;	
• D1.4	Report	on	VICINITY	business	requirements;	
• D2.1	Analysis	of	Standardisation	Context	and	Recommendations	for	Standards	Involvement.	

This	document	is	prepared	as	a	starting	point	for	technical	audience	to	understand	the	basic	concepts	
of	 the	 VICINITY	 solution.	 However,	 the	 document	 will	 not	 provide	 comprehensive	 and	 detailed	
documentation	with	all	the	technical	information.	It	should	help	technical	partners	within	consortium	
during	 the	 development	 of	 the	 VICINITY	 solution.	 Consequently,	 the	 most	 important	 source	 of	
information	 will	 be	 the	 actual	 source	 code	 and	 its	 documentation	 (e.g.	 user	manuals,	 installation	
guides	and	source	code	comments).	

The	system	will	be	developed	 through	 repeated	cycles	 (iterative)	and	 in	 smaller	portions	at	a	 time	
(incremental),	what	means	that	each	iteration	will	contain	part	of	the	analysis,	implementation	and	
testing.	This	technical	documentation	will	be	also	be	continuously	updated	throughout	the	project.	

 Deliverable	objectives	
The	objectives	of	this	deliverable	are	as	follows:	

• to	define	VICINITY	functional	requirements;	
• to	define	VICINITY	non-functional	requirements.	

	 	

	

	 D1.5	VICINITY	technical	requirements	specification	 10	

	 	

	
Public	

	

	

 Relation	to	other	Tasks	and	Deliverables	
The	following	documents	have	been	used	to	derive	requirements:	

• D1.1	VICINITY	requirement	capture	framework	–	defines	how	the	requirements	are	managed	
in	VICINITY	project;	

• D1.2	Report	on	business	drivers	and	barriers	of	IoT	interoperability	and	value	added	services	
–	defines	constraints	for	functional	specification	based	on	stakeholders’	drivers	and	barriers;	

• D1.3	Report	on	pilot	sites	and	operational	requirements	–	defines	constraints	deployment	and	
environment	constraints	for	functional	specification;	

• D1.4	 Report	 on	 VICINITY	 business	 requirements	 –	 provides	 inputs	 on	 desired	 VICINITY	
functionality.	

The	following	documents	will	take	forward	the	requirements	reported	in	this	document	

• D1.6	VICINITY	architectural	design	–	uses	mostly	non-functional	 requirements	 to	shape	 the	
VICINITY	architecture;	

• D2.2	 –	 Semantic	 interfaces	 –	 technical	 requirements	 specification	 is	 used	 as	 input	 for	 the	
VICINITY	Ontology.	

The	following	tasks	utilize	the	requirements	reported	in	this	document:	

• as	use	the	requirements	in	detail	design	and	implementation	of	VICINITY	Client	components	
and	security	services;	

• Task	5.1	exploits	the	requirements	to	design	value	added	services.	

	

	 D1.5	VICINITY	technical	requirements	specification	 11	

	 	

	
Public	

	

	

 Approach	
This	chapter	describes	the	approach	taken	to	define	the	technical	requirements	specification	as	part	
of	the	over-all	VICINITY	requirement	life-cycle	defined	in	the	Deliverable	D1.1	VICINITY	requirement	
capture	framework.	

 Methodology	
The	 VICINITY	 Technical	 requirements	 specification	 collects	 the	 following	 inputs	 from	 different	
deliverables:	

• Stakeholders	drivers	and	barriers	from	D1.2;	
• Stakeholders	business	requirements	from	D1.4;	
• Operational	and	interface	requirements	from	D1.3;	
• IoT	platforms,	infrastructures,	ontologies	and	relevant	standards	from	D2.1;	
• Requirement	management	methodology	from	D1.1.	

	

	
Figure 1 Relation of technical requirements specification with other type of requirements

The	technical	specification	is	defined	in	the	following	steps:	

• Chapter	 4	 defines	 the	 VICINITY	 Functional	 design	 as	 a	 technical	 use	 case	 (how	 the	 system	
should	 be	 used)	 based	 on	 business,	 use	 case	 requirements	 and	 stakeholders’	 drivers	 and	
barriers;		

• Chapter	5	includes	formalized	VICINITY	functional	requirements	based	on	technical	use	cases	
and	set	of	VICINITY	non-functional	requirements.	

The	summary	of	relation	of	technical	requirements	specification	with	other	type	of	requirements	are	
shown	on	Figure	2.	

	

	 D1.5	VICINITY	technical	requirements	specification	 12	

	 	

	
Public	

	

	

	
Figure 2 Relation upper level requirements and technical requirements

The	business	drivers	and	barriers,	use	case	requirements,	business	requirements	and	standards	will	be	
analysed.	From	the	analysis	the	list	of	actors	and	main	technical	use	cases	will	be	identified	(4.1,	4.2,	
4.3,	4.4).	Each	technical	use	case	will	be	described	and	decomposed	in	several	detailed	use	cases.	After	
definition	of	these	use	cases,	common	use	cases	will	be	identified	(4.5).	Short	description	(the	main	
goal)	will	be	defined	for	each	technical	use	case.	After	technical	use	case	completion,	the	manageable	
set	of	functional	requirements	will	be	identified	and	referenced	to	use	cases	(5.1).	

The	non-functional	requirements	are	derived	from	the	analysed	documents	as	follows:	

• user	 requirements	 (5.2.1)	 from	 “D1.2	 Report	 on	 business	 drivers	 and	 barriers	 of	 IoT	
interoperability	and	value	added	services”	domains’	related	drivers	and	barriers;	

• performance,	availability	and	maintainability	requirements	(5.2.2.1,	5.2.2.2,	5.2.2.3)	extracted	
from	“D1.3	Report	on	pilot	sites	and	operational	requirements”;	

• security	 requirements	 (5.2.2.4)	 from	 “D1.2	 Report	 on	 business	 drivers	 and	 barriers	 of	 IoT	
interoperability	and	value	added	services”	security	drivers	and	barriers;	

• privacy	 requirements	 (5.2.2.5)	 from	 “D1.2	 Report	 on	 business	 drivers	 and	 barriers	 of	 IoT	
interoperability	and	value	added	services”	privacy	drivers	and	barriers;	

• legal	requirements	5.2.3.10)	requirement	from	“D1.2	Report	on	business	drivers	and	barriers	
of	IoT	interoperability	and	value	added	services”	legal	drivers	and	barriers;	

• standardization	 requirements	 (5.2.3.2)	 from	 “D2.1	 Analysis	 of	 Standardisation	 Context	 and	
Recommendations	for	Standards	Involvement”.	

All	type	of	requirements	will	be	managed	together.	Systems	Modelling	Language	(SysML)	was	chosen	
by	 the	VICINITY	 consortium	as	 a	way	 to	 keep	 track	 of	 all	 the	 requirements	 and	 accommodate	 the	
changes,	 track	 modifications	 and	 assess	 their	 impact	 on	 the	 overall	 solution.	 SysML	 is	 a	 general-
purpose	modelling	language.	

 Artefacts’	identifiers	

Every	artefact	(use	case,	requirements)	of	technical	requirements	specification	should	have	its	unique	
identifier:	

• Use	case:	
o Main	technical	use	cases	UC	XX00,	where	XX	is	the	number	of	main	technical	use	case;	
o Detailed	technical	use	case	UC	XXYY,	where	XX	is	the	number	of	main	technical	use	

case	and	YY	is	number	of	detailed	technical	use	case;	
o Common	and	supporting	use	cases:	UC	AAAXXX,	where	AAA	is	notation	of	the	use	case	

type	 (such	as:	SEC	–	Security,	COM	–	Common,	NTF	–	Notification,	etc.)	and	XXX	 is	
number	of	the	use	case;	

	

	 D1.5	VICINITY	technical	requirements	specification	 13	

	 	

	
Public	

	

	

• Requirement:	
o A	Functional	requirement	describes	the	VICINITY	functionality/	behaviour:	VICINITY-

FUNCT-AAAXXX,	 where	 AAA	 is	 the	 name	 of	 a	 requirement	 group	 and	 XXX	 is	 the	
number	of	the	requirement.	

o Non-functional	requirement	describes	the	property	of	the	VICINITY	solution:	VICINITY-
NFUNC-AAAXXX,	 where	 AAA	 is	 the	 name	 of	 a	 requirement	 group	 and	 XXX	 is	 the	
number	of	the	requirement.	

Table 1 List of requirements groups

Requirement	group	 Requirement	identifier	

Use	case	requirements VICINITY-FUNCT-UCR010

User	requirements	 VICINITY-NFUNC-USR010	

Performance	 VICINITY-NFUNC-PER010

Availability	 VICINITY-NFUNC-AVL010	

Maintainability	 VICINITY-NFUNC-MNT010	

Security	 VICINITY-NFUNC-SEC010	

Privacy	 VICINITY-NFUNC-PRV010	

Standardization	requirements	 VICINITY-FUNCT-STD010,	
VICINITY-NFUNC-STD010	

Licensing	 VICINITY-FUNCT-LCS010,	
VICINITY-NFUNC-LCS010	

Value	added	service	 VICINITY-FUNCT-VAS010,	
VICINITY-NFUNC-VAS010	

 UML	Design	
The	 VICINITY	 Technical	 requirements	 specification	 is	 described	 by	 a	 set	 of	 use	 cases	 and	 set	 of	
functional	and	non-functional	requirements.	The	set	of	use	cases	is	reflecting	how	the	system	should	
be	 used.	 Each	 use	 case	 has	 an	 actor	who	 performs	 the	 action	 and	 system	 on	which	 the	 action	 is	
performed.	Consider	the	following	functionality:	“VICINITY	User	is	making	a	login”.	This	functionality	
will	be	described	by	use	case	diagram	as	follows	(Figure	3):	“VICINITY	User”	is	the	Actor,	“UC	SEC010	–	
User	login”	is	a	use	case	and	“VICINITY”	is	a	system.	Moreover,	there	is	another	use	case	“UC	SEC013	
–	Authentication”	which	performs	users	authentication.	This	use	case	 is	executed	by	“UC	SEC010	–	
User	login”	as	depicted	by	dashed	arrow	with	label	“<<include>>”.			

	

	 D1.5	VICINITY	technical	requirements	specification	 14	

	 	

	
Public	

	

	

	
Figure 3 Example of the technical use case diagram

The	functional	and	non-functional	requirement	will	be	written	directly	in	VICINITY	(Chapter	5)	using	
the	following	requirement	template	including:	

• requirement	identifier,	
• requirement	title,		
• requirement	description,	
• list	of	considered		requirements,	barriers	and	drivers	and	use	cases:	

VICINITY-REQ-0010	 <Requirement	title>	

<Requirement	description>	

Considered	requirements:	

<List	of	considered	requirements,	barriers	and	drivers	numbers>	

	

	 D1.5	VICINITY	technical	requirements	specification	 15	

	 	

	
Public	

	

	

 VICINITY	functional	design	
The	VICINITY	functional	design	identifies	the	following	technical	use	cases	and	their	principal	actors:	

Table 2 List of actors

Use	case	 Principal	actor	 Actor	description	

Interoperability	setup	 IoT	Operator	 IoT	Operator	primarly	controls	
the	 social	 network	 of	 devices	
and	services	–	neighbourhood.	

Device	register	and	discovery	 Device	 owner	 (including	
household	or	individuals)	

Device	 owner	 provides	 device	
and	its	data	in	VICINITY.	

Deploy	value	added	service	 Service	provider	 Service	provider	provides	value	
added	services		in	VICINITY.	

Connecting	VICINITY	 System	 integrator	 (including	
IoT	platform	or	Device	vendor)

System	 integrator	 integrates	
the	 local	 IoT	 infrastructures	 in	
the	VICINITY.	

	
Figure 4 Main VICINITY Actors and technical use cases

	

	 D1.5	VICINITY	technical	requirements	specification	 16	

	 	

	
Public	

	

	

 UC	0100	–	Interoperability	setup	

	
Figure 5 UC 0100 – Interoperability setup

Principal	actor:	IoT	Operator	

Description:	The	goal	of	the	interoperability	setup	use	case	is	to	create	and	maintain	a	social	network	
of	IoT	objects	called	a	“VICINITY	neighbourhood”	where	IoT	Operators	should	share	IoT	devices	and	
value	added	services	on	behalf	of	their	organization.	The	use	case	encompasses	the	following	features:	
manage	partnerships,	manage	access	to	IoT	devices	and	value	added	service.	

Partnership	 management	 includes	 searching	 for	 new	 partners	 (UC	 SRC010	 –	 Search	 in	 VICINITY),	
sending	partnership	request,	its	accepting	or	declining.	If	a	partnership	is	not	needed	any	more,	it	can	
be	removed	in	VICINITY.	Partnership	management	includes	setting	up	visibility	of	IoT	devices	and	value	
added	services	within	the	neighbourhood.	

Management	of	access	to	IoT	devices	and	value	added	service	enables	the	control	of		sharing	of	IoT	
devices	 and	 value	 added	 services	 within	 neighbourhood	 up	 to	 IoT	 object	 level.	 IoT	 Operator	 can	
request	 access	 to	 IoT	 objects	 managed	 by	 different	 oraganization.	 Request	 can	 be	 accepted	 or	
rejected.	Moreover,	accepted	request	can	be	rejected	any	time.	

where	there	is	exchanging	or	processing	sensitive/	private	data,	consent	needs	to	be	provided	by	IoT	
Operator	(data	subject).	

List	of	specific	and	common	use	cases:	

• UC	0110	–	Manage	partnership	with	another	organization;	
o UC	0112	–	Send	partner	request,	
o UC	0114	–	Accept	or	decline	partner	request,	

	

	 D1.5	VICINITY	technical	requirements	specification	 17	

	 	

	
Public	

	

	

o UC	0116	–	Cancel	partner	request,	
o UC	0118	–	Remove	partnership,	

• UC	0130	–	Request	to	access	an	IoT	Device,	
o UC	0134	–	Send	request	to	access	IoT	devices,	
o UC	0136	–	Accept	or	decline	request	to	access	IoT	device,	
o UC	0138	–	Cancel	request	to	access	an	IoT	device,	
o UC	0139	–	Remove	access	to	IoT	device,	

• UC	0150	–	Request	to	access	value	added	service,	
o UC	0154	–	Send	request	to	access	value	added	service,	
o UC	0156	–	Accept	or	decline	request	to	access	value	added	service,	
o UC	0158	–	Cancel	value	added	service	access	request,	
o UC	0159	–	Remove	access	to	value	added	service.	

 UC	0110	–	Manage	partnership	with	other	organization	

	
Figure 6 UC 0110 – Create partnership with other organization

The	goal	is	to	create	partnership	between	two	organizations	in	VICINITY	to	open	access	to	other	IoT	
devices	and	services.	The	use	case	includes	sending	partner	request	between	organizations,	accepting	
and	declining	of	such	partner	request	and	removing	exiting	partnership.	

 UC	0112	–	Send	partner	request	

IoT	 Operator	 should	 send	 a	 partner	 request	 to	 include	 an	 organization	 in	 its	 neighbourhood.	 The	
partner	request	might	include	the	acknowledgement	of	terms	and	conditions	or	privacy	management	
concerns	as	well.	The	managing	IoT	Operator	is	notified	about	any	pending	partner	requests.	

 UC	0114	–	Accept	or	decline	partner	request	

The	IoT	Operator	should	accept	or	decline	any	partner	request	for	her	organization.	The	requesting	IoT	
Operator	is	notified	about	any	result	of	the	request.	The	requesting	organization	becomes	part	of	the	
neighbourhood	 after	 accepting	 the	 partner	 request.	 Partnered	 organizations	might	 have	 visibility/	

	

	 D1.5	VICINITY	technical	requirements	specification	 18	

	 	

	
Public	

	

	

access	 to	all	 IoT	device	and	value	added	services	with	visibility/	access	set	 to	neighbourhood	 level.	
Declination	of	the	request	does	not	block	any	future	partner	requests.	

 UC	0116	–	Cancel	partner	request	

IoT	Operator	can	withdraw	any	partner	request	at	any	time	before	it	is	accepted	or	declined.	Accepted	
or	declined	requests	cannot	be	cancelled.	Any	confirmed	terms	and	conditions	or	privacy	management	
concerns	regarding	the	request	will	be	automatically	rejected.	

 UC	0118	–	Remove	partnership	

A	partner	in	a	VICINITY	network	may	withdraw	their	membership	at	any	time.	The	IoT	Operator	should	
remove	an	organization	from	neighbourhood	if	requested	by	its	organisation.	Any	access	or	visibility	
to	IoT	objects	(IoT	devices	and	value	added	services)	should	be	removed	automatically	except	those	
with	 public	 access	 or	 visibility.	 After	 removing	 access	 to	 IoT	 objects,	 there	 shoul	 be	 no	 further	
processing	of	new	information	from	device	acces	via	that	partnership.	

 UC	0130	–	Request	to	access	IoT	Device	

	
Figure 7 UC 0130 – Request to access IoT Device

 UC	0134	–	Send	request	to	access	IoT	devices	

The	IoT	Operator	should	send	an	IoT	device	access	request	to	the	Device	owner.	The	acknowledgement	
of	terms	and	conditions	or	privacy	management	concerns	can	be	included	as	part	of	the	request.	The		

	

	 D1.5	VICINITY	technical	requirements	specification	 19	

	 	

	
Public	

	

	

Device	owner	(or	manager)	is	notified	about	any	pending	access	requests.	Note	that	an	IoT	Operator	
can	send	IoT	device	access	request	only	on	visible	devices.	The	device	visibility	can	be	setup	by	Device	
owner	(UC	SEC050	-	Update	accessing	rules	of	IoT	device	/	group	of	devices).	

 UC	0136	–	Accept	or	decline	request	to	access	IoT	device	

The	Device	owner	should	accept	or	decline	any	request	to	access	IoT	devices	he/she	is	owning.	The	
requesting	IoT	Operator	is	notified	about	any	result	of	the	request.	The	processing	of	information	from	
an	IoT	device	can	proceed	after	accepting	of	the	request.	

 UC	0138	–	Cancel	request	to	access	IoT	device	

An	IoT	Operator	can	withdraw	any	IoT	device	access	request	any	time	before	it	is	accepted	or	declined.	
Accepted	or	declined	 request	 cannot	be	 cancelled.	Any	 confirmed	 terms	and	 conditions	or	privacy		
management	concerns	regarding	the	IoT	device	request	should	be	automatically	rejected.	

 UC	0139	–	Remove	access	to	IoT	device	

The	Device	owner	may	remove	access	to	any	IoT	device	he/she	owns.	Access	to	IoT	devices	should	be	
removed	automatically	 if	the	Device	owners’	organizations	are	not	in	neighbourhood	anymore.	The	
access	to	the	IoT	device	should	not	be	renewed	automatically	when	previously	removed	partnership	
is	requested	again.	After	removing	access	to	the	IoT	device,	the	processing	of	new	information	should	
be	constrained.	The	IoT	Operator	administering	organization	neighbourhood	can	remove	access	to	any	
IoT	device	as	well.1	

																																																													

1	This	 functionality	 should	be	 in-line	with	common	behavior	of	devices	 in	 IoT	 infrastructures,	 such	as	 change	
device	status	or	appearing	and	disappearing	of	device	in	proximity	network,	etc.		

	

	 D1.5	VICINITY	technical	requirements	specification	 20	

	 	

	
Public	

	

	

 UC	0150	–	Request	to	access	value	added	service	

	
Figure 8 UC 0150 - Request to access value added service

 UC	0154	–	Send	request	to	access	value	added	service	

An	 IoT	Operator	may	 send	a	 value	added	access	 request	 to	 the	Service	provider	administering	 the	
service.	The	access	request	for	service	should	include	an	acknowledgement	of	terms	and	conditions	or	
privacy	management	concerns.	The	Service	provider	 is	notified	about	any	pending	access	requests.	
Note	 that	 IoT	 Operator	 can	 only	 send	 request	 to	 access	 visible	 value	 added	 services.	 The	 service	
visibility	can	be	setup	by	Service	provider	(UC	SEC040	-	Update	accessing	rules	of	the	service	/	group	
of	services).	

 UC	0156	–	Accept	or	decline	request	to	access	value	added	service	

The	 Service	 provider	 should	 accept	 or	 decline	 any	 request	 to	 access	 value	 added	 service	 he	 is	
administering.	The	requesting	IoT	Operator	is	notified	about	any	result	of	the	request.	The	processing	
of	information	from	a	value	added	service	can	proceed	after	the	request	has	been	accepted.	

 UC	0158	–	Cancel	value	added	service	access	request	

An	 IoT	Operator	 can	withdraw	 any	 value	 added	 service	 request	 any	 time	 before	 it	 is	 accepted	 or	
declined.	Accepted	or	declined	requests	cannot	be	cancelled.	Any	confirmed	terms	and	conditions	or	
privacy	management	 concerns	 regarding	 the	 request	will	 be	 automatically	 rejected	 if	 a	 request	 is	
cancelled.	

	

	 D1.5	VICINITY	technical	requirements	specification	 21	

	 	

	
Public	

	

	

 UC	0159	–	Remove	access	to	value	added	service	

The	Service	provider	may	 remove	access	 to	value	added	service	he/she	 is	administering.	Access	 to	
value	added	service	should	be	removed	automatically	if	organizations	are	not	in	the	neighbourhood	
anymore.	The	access	to	value	added	services	should	not	be	renewed	automatically	when	previously	
removed	partnership	is	requested	again.	After	removing	access	to	value	added	service,	the	processing	
of	new	information	should	be	constrained.	An	IoT	Operator	should	be	able	to	remove	access	to	value	
added	service	its	organization	is	providing	or	using	at	any	time.2	

 UC	0200	–	Device	register	and	discovery	

	
Figure 9 UC 0200 – Device register and discovery

Principal	actor:	Device	owner	

Description:	 The	 goal	 of	 the	 use	 case	 is	 to	manage	 any	 IoT	 device	 lifecycle	within	 VICINITY,	 from	
automatic	discovery	or	manual	registration	of	any	new	IoT	device	in	the	VICINITY	Client’s	infrastructure	
to	 its	 potential	 removal.	 In	 case	 it	 is	 necessary,	 the	 VICINITY	 Agent	 should	 be	 reconfigured	
automatically	to	support	the	data	exchanging	protocol	utilized	by	the	IoT	device,	even	after	the	IoT	
device	communication	protocol	update.	The	device	owner	should	be	able	to	configure	the	profile	of	
the	 devices	 (such	 as	 communication	 protocol,	 description,	 security,	 privacy	 attributes	 and	 initial	
visibility	within	neighbourhood).	Access	to	the	IoT	device	can	be	constrained	by	terms	and	conditions	
or	privacy	management	procedures.	Note	that	a	domain	(network)	owner	(or	their	agent)	may	need	

																																																													
2	This	 functionality	 should	be	 in-line	with	common	behavior	of	devices	 in	 IoT	 infrastructures,	 such	as	 change	
device	status	or	appearing	and	disappearing	of	device	in	proximity	network,	etc.	

	

	 D1.5	VICINITY	technical	requirements	specification	 22	

	 	

	
Public	

	

	

to	 carry	out	 security	and	authorisation	 checks	on	an	 IoT	device	before	 it	 is	 added	 to	 their	 system.	
Details	are	explained	in	the	section	on	Security	use	cases	(UC	SEC000	–	Security).		

List	of	specific	and	common	use	cases:	

• UC	0210	–	Register	new	IoT	device;	
• UC	0215	–	Configure	IoT	device;	
• UC	0220	–	Retrieve	IoT	device;	
• UC	0230	–	Remove	IoT	device.	

 UC	0210	–	Register	new	IoT	device	

The	new	 IoT	 device	 should	 be	 recognized	 by	 the	VICINITY	 Client	 in	 an	 integrated	 infrastructure.	 A	
discovery	should	be	performed	on	each	newly	recognized	IoT	devices.	The	IoT	device	profile	should	be	
stored	in	the	repository,	based	on	identification	and	semantic	matching.	Security	checks	and	private	
attributes	should	be	initialized	in	the	profile	based	on	predefined	rules.	The	IoT	device	profile	should	
be	 verified	 by	 the	 Device	 owner.	 VICINITY	 Client	 should	 be	 configured	 to	 support	 the	 IoT	 device	
communication	protocols	and	semantic	data	mediation	mapping	should	be	updated	if	necessary.	

 UC	0215	–	Configure	IoT	device	

The	IoT	device	profile	should	include	the	static,	security	and	privacy	attributes.	The	Static	attributes	
should	 include	at	 least	name,	avatar,	 type	of	 the	device,	device	group	membership	and	 list	of	data	
sources	 provided	 by	 the	 device.	 Security	 and	 privacy	 attributes	 should	 include	 at	 least	 the	 device	
authorization	rules	and	privacy	attributes.	The	Device	owner	should	be	able	to	change	the	IoT	device	
configuration	manually.	VICINITY	Client	should	provide	the	device’s	configuration	automatic	updates	
if	possible.	VICINITY	should	perform	semantic	matching	and	VICINITY	Client	semantic	data	mediation	
mapping	configuration	in	case	of	changes	of	IoT	device.	

 UC	0220	–	Retrieve	IoT	device	configuration	

The	Device	owner	should	be	able	to	retrieve	static,	dynamic	attributes,	security	and	privacy	attributes	
and	audit	logs	stored	in	or	associated	with	the	IoT	device	profile.	The	IoT	device	configuration	should	
be	visible	to	all	VICINITY	users	based	on	the	IoT	device	or	profile	attributes	visibility/accessibility	rules.	

 UC	0230	–	Remove	IoT	device	

VICINITY	 should	 be	 able	 to	 remove	 any	 IoT	 device	 automatically	 based	 on	 its	 removal	 from	 the	
integrated	infrastructure	(e.g.	VICINITY	should	receive	IoT	device	removal	notification	from	integrated	
infrastructure)	 or	 manually	 by	 its	 device	 owner.	 The	 existence	 of	 the	 removed	 device	 should	 be	
traceable	through	audits	and	logs.	The	removal	of	the	device	is	notified	to	other	IoT	Operators	within	
the	neighbourhood	which	have	access	to	the	device.	

	

	 D1.5	VICINITY	technical	requirements	specification	 23	

	 	

	
Public	

	

	

 UC	0300	–	Deploy	value	added	services	

	
Figure 10 UC 0300 – Deploy value added services

Principal	actor:	Service	provider	

Description:	The	 service	 provider	 should	 be	 able	 to	manage	 the	whole	 life	 cycle	 of	 a	 value	 added	
service	connected	to	VICINITY	from	its	discovery	or	registration	a	service	to	its	removal	from	VICINITY.	
Registered	 value	 added	 service	 profile	 attributes	 (such	 as	 communication	 protocol,	 description,	
security,	 privacy	 attributes	 and	 initial	 visibility	within	 neighbourhood)	 should	be	 configured	by	 the	
service	provider.	The	service	provider	can	manage	terms	and	condition	to	use	the	value	added	service.	

List	of	specific	and	common	use	cases:	

• UC	0310	–	Register	new	value	added	service,	
• UC	0315	–	Configure	value	added	service	profile,	
• UC	0320	–	Retrieve	value	added	service	configuration,	
• UC	0330	–	Remove	value	added	service.	

 UC	0310	–	Register	new	value	added	service	

The	 availability	 of	 a	 new	 value	 added	 service	 should	 be	 recognized	 by	 the	 VICINITY	 Client	 in	 an	
integrated	 infrastructure.	For	each	value	added	service	a	discovery	should	be	performed.	Based	on	
identification	and	semantic	matching	during	the	discovery,	the	value	added	service	profile	should	be	
stored	in	the	repository.	Security	and	privacy	attributes	should	be	initialized	in	the	profile	based	on	
predefined	rules	where	applicable.	The	value	added	service	profile	should	be	verified	by	the	service	
provider.	 VICINITY	 Client	 should	 be	 configured	 to	 support	 the	 value	 added	 service	 communication	
protocols	and	semantic	data	mediation	mapping	should	be	updated	if	necessary.	

 UC	0315	-	Configure	value	added	service	profile	

The	value	added	service	profile	should	 include	the	static,	security	and	privacy	attributes.	The	Static	
attributes	should	include	at	least	name,	avatar,	type	of	the	service,	service	group	membership	and	list	
of	data	sources	provided	by	the	service.	Security	and	privacy	attributes	should	include	at	least	service	

	

	 D1.5	VICINITY	technical	requirements	specification	 24	

	 	

	
Public	

	

	

authorization	rules	and	privacy	attributes.	The	service	provider	should	be	able	 to	change	the	value	
added	 service	 configuration	 manually.	 VICINITY	 Client	 should	 obtain	 automatic	 updates	 of	
configuration	from	the	value	added	service	 if	possible.	VICINITY	should	perform	semantic	matching	
and	VICINITY	Client	semantic	data	mediation	mapping	configuration	if	necessary.	

 UC	0320	–	Retrieve	value	added	service	configuration	

The	 Service	 provider	 should	 be	 able	 to	 retrieve	 static,	 dynamic	 attributes,	 security	 and	 privacy	
attributes	and	audit	logs	stored	in	or	associated	with	the	value	added	service	profile.	The	value	added	
service	 configuration	 should	 be	 visible	 to	 all	 VICINITY	 users	 based	 on	 the	 service	 attributes	
visibility/accessibility	rules.	

 UC	0330	–Remove	value	added	service	

VICINITY	should	be	able	to	remove	any	value	added	service	automatically	based	on	its	removal	from	
the	 integrated	 infrastructure	 (e.g.	VICINITY	should	receive	value	added	service	removal	notification	
from	an	integrated	infrastructure)	or	its	manually	removal	by	the	service	provider.	The	existence	of	
the	 removed	service	should	be	 traceable	 through	audits	and	 logs.	The	 removal	of	 the	value	added	
service	is	notified	to	other	IoT	Operators	within	the	neighbourhood.	

	 	

	

	 D1.5	VICINITY	technical	requirements	specification	 25	

	 	

	
Public	

	

	

 UC	0400	–	Connecting	VICINITY	

	
Figure 11 UC 0400 - Connecting VICINITY

Principal	actor:	System	integrator	

Description:	The	objective	of	this	use	case	is	to	setup	the	connection	between	VICINITY	and	VICINITY	
Client	infrastructures.	

There	are	two	options	on	how	VICINITY	can	be	integrated	in	VICINITY	client	infrastructures.			

• The	VICINITY	Agent	is	a	software	component	implemented	for	a	specific	platform	add-on.	This	
is	usually	part	of	an	open	source	integrated	infrastructure	platform.		The	VICINITY	Agent	is	still	
under	 full	 control	 of	 the	 integrated	 infrastructure	 owner;	 however,	 it	 can	 provide	 several	
automatic	 features	 such	 as	 automatic	 installation	 and	 configuration.	 The	 VICINITY	 Agent	
should	be	installed	by	the	system	integrator	or	provided	by	the	VICINITY	Client	infrastructure.	
The	installed	VICINITY	Agent	should	be	registered	within	VICINITY.	The	VICINITY	Agent	should	
be	able	to	perform	initial	and	continuous	discovery	of	IoT	objects	(IoT	devices	and	value	added	
services).	

• VICINITY	Adapter	is	software	component	implemented	and	fully	managed	under	governance	
of	 integrated	infrastructure	owner	handling	exchange	of	data	within	VICINITY.	The	VICINITY	
Adapter	should	be	registered	in	VICINITY	by	a	system	integrator.	The	VICINITY	Adapter	should	
perform	 the	 initial	 and	 continuous	 discovery	 of	 IoT	 objects	 (IoT	 devices	 and	 value	 added	
services).	

VICINITY	 Clients	 (VICINITY	 Agent	 and/or	 VICINITY	 Adapter)	 should	 support	 initial	 set-up	 of	
communication	channels	with	other	VICINITY	Clients.	The	communication	channels	set-up	should	be	
continuously	updated	according	to	 interoperability	set-up	of	neighbourhood.	Thus,	VICINITY	Clients	
should	exchange	information	only	based	on	the	actual	set-up	of	communication	channels.	

	

	 D1.5	VICINITY	technical	requirements	specification	 26	

	 	

	
Public	

	

	

List	of	specific	and	common	use	cases:	

• UC	0420	-	Install	VICINITY	Agent;	
• UC	0423	-	Register	VICINITY	Agent	in	VICINITY;	
• UC	0425	–	Discovery	of	IoT	objects;	
• UC	0430	–	Register	VICINITY	Adapter	in	VICINITY;	
• UC	0440	–	Uninstalling	VICINITY	Agent;	
• UC	0447	–	Manual	removal	of	the	VICINITY	Agent;	
• UC	0448	–	Removal	of	the	VICINITY	Adapter;	
• UC	0450	–	Data	exchange	facilitation;	
• UC	0455	–	IoT	object	simulation;	
• UC	0460	–	Indicating	the	status	of	the	VICINITY	client.	

 UC	0420	–	Install	VICINITY	Agent	

The	system	integrator	should	be	able	to	download	and	install	the	VICINITY	Agent	from	the	platform	
specific	market	place	or	internet	if	market	place	is	not	available.	

 UC	0423	–	Register	VICINITY	Agent	in	VICINITY	

The	VICINITY	Agent	 should	be	 registered	within	 the	VICINITY	automatically	or	manually.	Automatic	
registration	should	use	IoT	Operator	credentials	if	possible.	Manual	registration	should	be	performed	
by	the	IoT	Operator	through	the	VICINITY	Agent	user	interface	if	possible	or	directly	in	VICINITY	Server	
user	 interface.	During	 the	 registration	 process	 the	VICINITY	Agent	 profile	 should	 be	 created.	 After	
registration,	the	initial	discovery	of	IoT	objects	should	be	performed.	

 UC	0425	–	Discovery	of	IoT	objects	

During	the	initial	discovery,	the	search	of	all	IoT	objects	accessible	through	VICINITY	Client	(Agent	or	
Adapter)	should	be	performed.	The	initial	discovery	should	not	need	to	be	constrained,	while	the	goal	
is	to	get	a	super	set	of	accessible	IoT	objects.	For	each	discovered	object,	the	object	identification	is	
performed	including	the	semantic	matching	of	the	IoT	object	descriptor.	An	initial	version	of	the	IoT	
object	profile	 is	created	and	stored	in	the	respective	IoT	object	profile	repository.	Based	on	the	IoT	
object	 profile,	 the	 VICINITY	 Client	 semantic	 data	mediation	mapping	 and	 communication	 protocol	
support	should	be	updated	if	necessary.	

 UC	0430	–	Register	VICINITY	Adapter	in	VICINITY	

The	VICINITY	Adapter	should	be	registered	within	the	VICINITY	automatically	or	manually.	Automatic	
registration	should	use	IoT	Operator	credentials	 if	possible.	Manual	registration	should	be	provided	
and	performed	by	the	IoT	Operator	through	the	VICINITY	Adapter	user	interface	if	possible,	or	directly	
in	 VICINITY.	 During	 the	 registration	 process	 the	 VICINITY	 Adapter	 profile	 should	 be	 created.	 After	
registration,	the	initial	discovery	of	IoT	objects	should	be	performed.	

 UC	0440	–	Uninstalling	VICINITY	Agent	

The	System	integrator	should	be	able	to	uninstall	the	VICINITY	Agent.	The	Agent	uninstallation	should	
remove	all	 associated	 IoT	objects	 (IoT	devices,	 value	added	 service)	 from	VICINITY	and	update	 the	

	

	 D1.5	VICINITY	technical	requirements	specification	 27	

	 	

	
Public	

	

	

interoperability	set-up	including	communication	channels	set-up.	VICINITY	should	keep	audit	trails	and	
logs	regarding	the	VICINITY	Agent	even	after	its	removal.	

 UC	0447	–	Manual	removal	of	the	VICINITY	Agent	

The	IoT	Operator	should	be	able	to	remove	the	registered	VICINITY	Agent.	The	Agent	removal	should	
remove	all	 associated	 IoT	objects	 (IoT	devices,	 value	added	 service)	 from	VICINITY	and	update	 the	
interoperability	set-up	including	communication	channels	set-up.	VICINITY	should	keep	audit	trails	and	
logs	regarding	the	VICINITY	Agent	even	after	its	removal.	

 UC	0448	–	Removal	of	the	VICINITY	Adapter	

An	IoT	Operator	should	be	able	to	remove	the	registered	VICINITY	Adapter.	All	associated	IoT	objects	
(IoT	devices,	value	added	services)	should	be	removed	from	VICINITY	and	the	interoperability	set-up	
including	communication	channels	set-up	should	be	updated.	VICINITY	should	keep	audit	 trails	and	
logs	regarding	the	VICINITY	Adapter	even	after	its	removal.	

 UC	0450	–	Data	exchange	facilitation	

VICINITY	 Client	 should	 be	 able	 to	 facilitate	 the	 data	 exchange	 with	 other	 VICINITY	 Clients	 using	
common	standardized	protocols.	The	data	exchange	channels	are	set-up	based	on	interoperability	set-
up	(UC	0100	–	Interoperability	setup).	

 UC	0455	–	IoT	object	simulation	

VICINITY	 Client	 should	 be	 able	 to	 simulate	 supported	 shared	 IoT	 object	 within	 existing	 IoT	
infrastructure.	

 UC	0460	-	Indicating	the	status	of	the	VICINITY	Client	

The	VICINITY	Client	should	notify	VICINITY	about	 initial	and	any	changes	of	status	of	associated	 IoT	
Objects	if	possible.	

 Common	and	supporting	use	cases	
This	section	consists	of	the	following	groups	use	cases	which	are	available	across	the	whole	VICINITY	
solution:	

• Legal,	
• Security	and	privacy,	
• IoT	devices	and	value	added	services	grouping,	
• Organization	and	user	management,	
• Search	and	User	notifications.	

Use	cases	are	supportive	to	previously	described	business	driven	use	cases	(4.1,	4.2,	4.3,	4.4),	thus	the	
following	generic	actors	needs	to	be	introduced:	

	

	 D1.5	VICINITY	technical	requirements	specification	 28	

	 	

	
Public	

	

	

Table 3 List of supportive actors

Actor	 Description	

VICINITY	User	 Any	user	interacting	with	VICINITY.	

VICINITY	Organization	Administrator	 VICINITY	 User	 which	 has	 a	 right	 to	 set-up	
organization	profile,	assign	VICINITY	roles	to	other	
users	within	her	organization.	

VICINITY	User	is	a	generic	actor	of	all	other	actors,	i.e.	the	VICINITY	function	provided	to	a	VICINITY	
User	is	also	provided	to	any	other	actor	(Figure	12).	

	
Figure 12 Relation between actors

 UC	LEG000	–	Legal	

	
Figure 13 UC LEG000 – Legal

 UC	LEG010	–	Manage	terms	and	conditions	

The	Device	owner	and	the	service	provider	should	be	able	to	manage	different	terms	and	conditions.	
The	terms	and	conditions	might	be	associated	with	specific	value	added	services	and	IoT	devices.	They	
should	 be	 part	 of	 the	 IoT	 object	 profile.	 Their	 visibility	 should	 be	 the	 same	 as	 the	 visibility	 of	 the	
associated	IoT	object’s	profile.	

	

	 D1.5	VICINITY	technical	requirements	specification	 29	

	 	

	
Public	

	

	

 UC	LEG020	–	Confirm	terms	and	conditions	

The	IoT	Operator	should	be	able	to	confirm	the	terms	and	conditions	of	the	value	added	service	and/or	
IoT	device	during	 the	 interoperability	 setup.	 The	 confirmation	of	 terms	and	 conditions	 is	 stored	 in	
VICINITY	 according	 to	 the	 security	 requirements.	 The	 IoT	 Operator	 should	 not	 be	 able	 to	 revoke	
confirmed	terms	and	conditions,	except	as	part	of	a	termination	of	an	agreement.	

 UC	SEC000	–	Security	

	
Figure 14 UC SEC000 – Security

 UC	SEC010	–	User	login/	logout		

The	VICINITY	User	should	be	able	to	login	and	logout	in	VICINITY	using	at	least		user	name	and	password	
credentials.	

 UC	SEC030	–	User	role	management	

The	 VICINITY	 Organization	 administrator	 should	 be	 able	 to	 associate	 the	 VICINITY	 Users	 with	 the	
organization	and	update	the	user’s	roles	within	the	organization	according	to	its	needs.	The	VICINITY	
Organization	 administrator	 should	 be	 able	 to	 assign	 at	 least	 with	 the	 following	 roles:	 VICINITY	
Organization	 administrator,	 VICINITY	 IoT	 Operator,	 VICINITY	 Device	 owner	 and	 VICINITY	 Service	
provider.	A	VICINITY	User	may	have	more	than	one	role.	

	

	 D1.5	VICINITY	technical	requirements	specification	 30	

	 	

	
Public	

	

	

 UC	SEC040	-	Update	accessing	rules	of	the	service	/	group	of	services	

The	Service	provider	should	set-up	accessing	rules	for	each	value	added	service	or	value	added	service	
group.	At	least	the	following	accessing	rules	should	be	considered:	

• Public	visibility	and	public	access;	
• Public	visibility	and	access	for	partners;	
• Public	visibility	and	access	upon	request;	
• Public	visibility	and	private	access;	
• Visibility	to	partners	and	access	for	partners;	
• Visibility	to	partners	and	access	upon	request;	
• Visibility	to	partners	and	private	access;	
• Private	visibility	and	private	access.	

 UC	SEC050	-	Update	accessing	rules	of	IoT	device	/	group	of	devices	

The	Device	owner	should	set-up	accessing	rules	for	each	IoT	device	or	IoT	device	group.	At	least	the	
following	accessing	rules	should	be	considered:	

• Public	visibility	and	public	access;	
• Public	visibility	and	access	for	partners;	
• Public	visibility	and	access	upon	request;	
• Public	visibility	and	private	access;	
• Visibility	to	partners	and	access	for	partners;	
• Visibility	to	partners	and	access	upon	request;	
• Visibility	to	partners	and	private	access;	
• Private	visibility	and	private	access.	

 UC	SEC060	-	Set-up	visibility	of	user	profile	

The	VICINITY	User	 should	be	 able	 to	 setup	 visibility	 of	 its	 profile.	 The	 visibility	 organization	profile	
should	not	influence	visibility	of	organization’s	users’	profiles.	

 UC	SEC070	–	Retrieve	audit	trails	of	entity	

The	VICINITY	User	should	be	able	to	view	entity	(she	has	access	to)	audit	trails	including	chronological	
order	of	 important	events	of	the	entity	(value	added	service,	 IoT	device,	user	access	rules,	etc.)	 life	
cycle	such	as:	registration,	change	of	configuration,	removal,	etc.	

	

	 D1.5	VICINITY	technical	requirements	specification	 31	

	 	

	
Public	

	

	

 UC	PRV000	–	Privacy	

	
Figure 15 UC PRV000 – Privacy

 UC	PRV010	–	Manage	consent	to	process	private	data	

The	IoT	Operator	should	manage	privacy	throughout	the	 life-cycle	using	consent	to	process	private	
data.	These	consents	should	be	associated	with	value	added	services.	Confirmed	consents	should	be	
part	of	the	value	added	service’s	profile.	They	should	be	visible	only	to	the	IoT	Operator	and	the	Service	
provider.	

 UC	PRV050	–	Provide	consent	to	process	private	data	

The	Device	owner	should	be	able	to	confirm	consent	to	process	private	data	by	a	value	added	service	
or	organization	which	has	access	to	the	IoT	device.	The	Device	owner	should	be	able	to	manage	all	
confirmed	consents	and	revoke	them	individually.	

 UC	GRP000	–	IoT	devices	and	value	added	services	grouping	

	
Figure 16 UC GRP000 – IoT devices and value added services grouping

	

	 D1.5	VICINITY	technical	requirements	specification	 32	

	 	

	
Public	

	

	

 UC	GRP010	–	Manage	IoT	device	group	

The	Device	owner	should	be	able	to	create	(or	remove)	an	IoT	device	group	and	add	or	remove	IoT	
devices	from	this	group.	The	device	owner	should	be	able	to	perform	group	actions	on	IoT	devices	such	
as	change	IoT	device	access	rules.	Each	IoT	device	group	should	have	a	profile	including	at	least	name,	
avatar,	description,	device	group	visibility,	accessibility	rules,	optionally	terms	and	conditions	and/or	
consent	to	process	private	data	template.	

 UC	GRP020	–	Manage	value	added	service	group	

The	Service	provider	should	be	able	to	create	(or	remove)	a	value	added	service	group	and	add	(or	
remove)	value	added	services	from	this	group.	The	service	provider	should	be	able	to	perform	group	
actions	on	value	added	services	such	as	changing	value	added	service	access	rules.	Each	value	added	
service	group	should	have	a	profile	including	at	least	name,	avatar,	description,	value	added	service	
group	 visibility,	 accessibility	 rules,	 optionally	 terms	 and	 conditions	 and/or	 consent	 to	 process	 the	
private	data	template.	

 UC	COM000	–	Organization	and	user	management	

	

	
Figure 17 UC COM000 – Organization and user management

	

	 D1.5	VICINITY	technical	requirements	specification	 33	

	 	

	
Public	

	

	

 UC	COM030	–	User	registration	

The	VICINITY	User	should	be	registered	using	the	registration	form.	The	user	should	be	able	to	register	
only	with	a	valid	email	address.	

 UC	COM040	–	Organization	invitation	

The	VICINITY	User	should	be	able	to	invite	other	organizations	to	join	the	VICINITY	network	or	create	
the	organization	by	himself/herself.	

 UC	COM050	–	User	management	

The	 VICINITY	 Organization	 administrator	 should	 be	 able	 to	 invite	 other	 users	 (not	 registered	 in	
VICINITY)	 to	 join	 the	VICINITY	under	 his/her	 organization.	 The	VICINITY	Organization	 administrator	
should	be	able	to	add	(already	registered	users)	or	remove	users	from	the	organization.	

 UC	COM070	–	Management	of	organization	profile	

The	VICINITY	Organization	administrator	should	be	able	to	view	the	organization	profile	based	on	the	
visibility	of	rules.	The	organization	profile	should	include	at	least	the	organization	name,	description,	
avatar	 and	 location.	 The	 organization	 profile	 should	 include	 associated	 entities	 such	 as	 users,	 IoT	
devices,	value	added	services	and	partnered	organizations.	The	organization	profile	can	be	modified	
by	the	VICINITY	Organization	administrator	only.	

 UC	COM120	–	Remove	organization	

The	VICINITY	Organization	administrator	should	be	able	to	remove	the	organization	from	their	VICINITY	
network.	The	organization	removal	should	 invalidate	all	 the	registered	VICINITY	Clients,	 IoT	devices	
and	value	added	 services.	Moreover,	 it	 should	 remove	 the	organization’s	neighbourhood	 including	
interoperability	and	communication	channels	 set-ups.	New	registration	of	 the	organization	will	not	
renew	 any	 removed	 profiles,	 configurations	 and	 set-ups.	 All	 association	 of	 VICINITY	 users	with	 an	
organization	should	be	removed.	Removal	of	the	organization	should	not	remove	the	relevant	audit	
trails	or	logs.	

 UC	COM160	–	Manage	user	profile	

The	VICINITY	user	should	be	able	to	update	only	his/her	own	user	profile.	

	

	 D1.5	VICINITY	technical	requirements	specification	 34	

	 	

	
Public	

	

	

 UC	SRC010	–	Search	in	VICINITY	

	
Figure 18 UC SRC010 – Search in VICINITY

The	 VICINITY	 User	 should	 be	 able	 to	 search	 in	 VICINITY	 at	 least	 the	 following	 entities:	 users,	
organizations,	 IoT	 devices,	 IoT	 devices	 groups,	 value	 added	 services,	 value	 added	 services	 groups.	
VICINITY	network	should	filter	search	results	based	on	the	access	rules	of	each	entity	and	the	VICINITY	
User	 performing	 the	 search.	 The	 VICINITY	 search	 might	 be	 constrained	 to	 their	 location	 or	
neighbourhood.	

 UC	NTF010	-	User	notifications	

	
Figure 19 UC NTF010 - User notifications

The	VICINITY	User	should	be	able	to	receive	notifications	regarding	important	events	in	VICINITY	such	
as	partnership	or	access	requests,	new	IoT	device	or	value	added	service	notifications.	The	VICINITY	
User	should	be	able	 read	only	 those	notifications	associated	with	his	 role	and	relevant	notification	
object.	 The	 user	 notification	 should	 include	 at	 least	 sender,	 recipient	 and	 role	 of	 notification,	
notification	subject	and	object.	

	 	

	

	 D1.5	VICINITY	technical	requirements	specification	 35	

	 	

	
Public	

	

	

	

 List	of	actors	and	use	cases	
This	chapter	summarizes	the	list	of	actors	with	assigned	list	of	use	cases.	

Table 4 List of actors and associated use cases

Actor	 Assigned	use	cases	

IoT	Operator	 UC	 0110	 –	 Manage	 partnership	 with	 another	
organization;	
UC	0112	–	Send	partner	request;	
UC	0114	–	Accept	or	decline	partner	request;	
UC	0116	–	Cancel	partner	request;	
UC	0118	–	Remove	partnership;	
UC	0130	–	Request	to	access	an	IoT	Device;	
UC	0134	–	Send	request	to	access	IoT	devices;	
UC	0136	–	Accept	or	decline	 request	 to	access	 IoT	
device;	
UC	0138	–	Cancel	request	to	access	an	IoT	device;	
UC	0139	–	Remove	access	to	IoT	device;	
UC	0150	–	Request	to	access	value	added	service;	
UC	 0154	 –	 Send	 request	 to	 access	 value	 added	
service;	
UC	0156	–	Accept	or	decline	request	to	access	value	
added	service;	
UC	 0158	 –	 Cancel	 value	 added	 service	 access	
request;	
UC	0159	–	Remove	access	to	value	added	service;	
UC	LEG020	–	Confirm	terms	and	conditions;	
UC	 PRV010	 –	 Manage	 consent	 to	 process	 private	
data;	

Device	owner	 UC	0200	–	Device	register	and	discovery;	
UC	0210	–	Register	new	IoT	device;	
UC	0215	–	Configure	IoT	device;	
UC	0220	–	Retrieve	IoT	device;	
UC	0230	–	Remove	IoT	device;	
UC	0136	–	Accept	or	decline	 request	 to	access	 IoT	
device;	
UC	0139	–	Remove	access	to	IoT	device;	
UC	LEG010	–	Manage	terms	and	conditions;	
	

	

	 D1.5	VICINITY	technical	requirements	specification	 36	

	 	

	
Public	

	

	

Actor	 Assigned	use	cases	

	
UC	SEC050	–	Update	accessing	rules	of	IoT	device	/	
group	of	devices;	
UC	 PRV050	 –	 Provide	 consent	 to	 process	 private	
data;	
UC	GRP010	–	Manage	IoT	device	group;	

Service	provider	 UC	0300	–	Deploy	value	added	services;	
UC	0310	–	Register	new	value	added	service;	
UC	0315	–	Configure	value	added	service	profile;	
UC	0320	–	Retrieve	value	added	service	
configuration;	
UC	0330	–	Remove	value	added	service;	
UC	0156	–	Accept	or	decline	request	to	access	
value	added	service;	
UC	0159	–	Remove	access	to	value	added	service;	
UC	0159	–	Remove	access	to	value	added	service;	
UC	LEG010	–	Manage	terms	and	conditions;	
UC	SEC040	–	Update	accessing	rules	of	the	service	/	
group	of	services;	
UC	GRP020	–	Manage	value	added	service	group;	

System	integrator		 UC	0400	–	Connecting	VICINITY;	
UC	0420	–	Install	VICINITY	Agent;	
UC	0423	–	Register	VICINITY	Agent	in	VICINITY;	
UC	0425	–	Discovery	of	IoT	objects;	
UC	0430	–	Register	VICINITY	Adapter	in	VICINITY;	
UC	0440	–	Uninstalling	VICINITY	Agent;	
UC	0447	–	Manual	removal	of	the	VICINITY	Agent;	
UC	0448	–	Removal	of	the	VICINITY	Adapter;	
UC	0450	–	Data	exchange	facilitation;	
UC	0455	–	IoT	object	simulation;	
UC	 0460	 –	 Indicating	 the	 status	 of	 the	 VICINITY	
client;	

	

	 D1.5	VICINITY	technical	requirements	specification	 37	

	 	

	
Public	

	

	

Actor	 Assigned	use	cases	

VICINITY	User	 UC	SEC010	–	User	login/	logout;	
UC	SEC060	-	Set-up	visibility	of	user	profile;	
UC	SEC070	–	Retrieve	audit	trails	of	entity;	
UC	COM030	–	User	registration;	
UC	COM040	–	Organization	invitation;	
UC	COM160	–	Manage	user	profile;	
UC	SRC010	Search	in	VICINITY;	
UC	NTF010	-	User	notifications;	

VICINITY	Organization	Administrator	 UC	SEC030	–	User	role	management;	
UC	COM050	–	User	management;	
UC	COM070	–	Management	of	organization	profile;	
UC	COM120	–	Remove	organization;	

	

	

	 D1.5	VICINITY	technical	requirements	specification	 38	

	 	

	
Public	

	

	

 VICINITY	Interoperability	platform	requirements	

 Functional	requirements	
The	manageable	set	of	functional	requirements	is	extracted	from	the	use	cases	defined	in	chapter	4.	

 Interoperability	set-up	requirements	

The	chapter	summarizes	the	functional	requirements	of	the	main	use	case	UC	0100	–	Interoperability	
setup.	

VICINITY-FUNC-UCR010	 Neighbourhood	building	based	on	partnership	network.	

VICINITY	should	support	the	creation	of	a	social	network	based	on	partnership	between	organizations.	
The	social	network	should	be	built	based	on:	

• partnership	request;	
• acknowledgement	or	rejecting	of	partnership	requests;	
• cancelling	unnecessary	partnerships.	

Considered	requirements:	

UC	0112,	UC	0114,	UC	0116,	UC	0118,	UC	NTF010,	VICINITY-B&D-BLD06,	VICINITY-B&D-	ENR06	

	

VICINITY-FUNC-UCR020	 Device	visibility	and	accessibility	set-up	within	neighbourhood.	

VICINITY	should	make	visible	devices	and	their	data	sources	within	the	neighbourhood,	and	provide	
access	 to	 these	 devices	 and	 information.	 The	 visibility	 and	 accessibility	 of	 any	 device	 should	 be	
distinguished	on	the	following	levels:	

• Public	visibility	and	public	access;	
• Public	visibility	and	access	for	partners;	
• Public	visibility	and	access	upon	request;	
• Public	visibility	and	private	access;	
• Visibility	to	partners	and	access	for	partners;	
• Visibility	to	partners	and	access	upon	request;	
• Visibility	to	partners	and	private	access;	
• Private	visibility	and	private	access.	

Considered	requirements:	

UC	SEC050,	VICINITY-BR-040	

	

	

	 D1.5	VICINITY	technical	requirements	specification	 39	

	 	

	
Public	

	

	

VICINITY-FUNC-UCR030	 Request	based	device	accessibility.	

VICINITY	should	provide	means	to	manage	access	to	any	devices	based	on	specific	approval	of	access	
requests	sent	 to	 the	 IoT	Operator.	VICINITY	should	provide	means	 to	send,	approve,	 reject	access	
requests	and	revoking	approved	access	request.	

Considered	requirements:	

UC	 0134,	 UC	 0136,	 UC	 0138,	 UC0140,	 UC	 NTF010,	 VICINITY-B&D-	 ENR06,	 VICINITY-B&D-	 HLT04,	
VICINITY-BR-040	

	

VICINITY-FUNC-UCR040	 Value	 added	 service	 visibility	 and	 accessibility	 set-up	 within	
neighbourhood.	

VICINITY	 should	 allow	 configure	 visibility	 and	 accessibilty	 to	 any	 value	 added	 service	 within	 the	
neighbourhood.	The	visibility	and	accessibility	of	any	value	added	service	should	be	distinguished	on	
the	following	levels:	

• Public	visibility	and	public	access;	
• Public	visibility	and	access	for	partners;	
• Public	visibility	and	access	upon	request;	
• Public	visibility	and	private	access;	
• Visibility	to	partners	and	access	for	partners;	
• Visibility	to	partners	and	access	upon	request;	
• Visibility	to	partners	and	private	access;	
• Private	visibility	and	private	access.	

Considered	requirements:	

UC	SEC040,	VICINITY-B&D-	ENR06,	VICINITY-BR-040	

	

VICINITY-FUNC-UCR050	 Value	added	service	accessibility	request.	

VICINITY	 should	 provide	 means	 to	 manage	 access	 to	 any	 value	 added	 service	 based	 on	 specific	
approval	of	access	request	sent	to	the	IoT	Operator.	VICINITY	should	provide	means	to	send,	approve,	
reject	access	requests	and	revoking	approved	access	request.	

Considered	requirements:	

UC	 0154,	 UC	 0156,	 UC	 0158,	 UC0160,	 UC	 NTF010,	 VICINITY-B&D-	 ENR06,	 VICINITY-B&D-	 HLT04,	
VICINITY-BR-040	

	

	 	

	

	 D1.5	VICINITY	technical	requirements	specification	 40	

	 	

	
Public	

	

	

 Value	added	service	lifecycle	requirements	

This	set	of	requirements	defines	the	registration	functionality	of	a	new	value	added	service,	its	profile	
management	in	VICINITY	and	its	removal	when	it	is	not	necessary	anymore.	

VICINITY-FUNC-UCR060	 VICINITY	should	support	 the	 registration	of	a	new	value	added	
service.	

VICINITY	should	provide	means	to	register	a	new	value	added	service.	Registration	might	be	manual	
or	automatic.	

The	registration	process	should	include	at	least:	

• the	semantic	matching	of	the	value	added	service,	
• creating	value	added	service	profile	and	
• initialize	the	value	added	service	visibility	and	accessibility.	

Considered	requirements:	

UC	0310,	UC	0320,	UC	0425	

	

VICINITY-FUNC-UCR070	 VICINITY	 should	 support	 value	 added	 service	 profile	
management.	

VICINITY	should	manage	(create,	provide,	update,	remove	and	list)	the	profile	for	each	value	added	
service	visible	and	accessible	in	VICINITY.	The	value	added	service	profile	should	include	at	least:	

• service	name;	
• service	avatar;	
• type	of	service;	
• service	group	membership;	
• list	of	data	sources;	
• identification	of	data	owners;	
• authorization	rules	and	privacy	attributes.	

Considered	requirements:	

UC	0315,	UC	0320,	VICINITY-BR-ENR050	

	

	

	 D1.5	VICINITY	technical	requirements	specification	 41	

	 	

	
Public	

	

	

VICINITY-FUNC-UCR080	 VICINITY	 should	 support	 value	 added	 service	 semantic	 data	
mediation	mapping.	

VICINITY	should	provide	means	to	semantically	map	the	value	added	service	and	provide	semantic	
data	mediation	mapping	of	 services	 throughout	 the	whole	 lifecycle	of	 the	device	 including	device	
registration	or	device	change.	

Considered	requirements:	

UC	0315,	UC	0310,	ORE_001,	ORE_002,	ORE_004,	ORE_004,	ORE_005,	ORE_006,	ORE_007,	ORE_009,	
ORE_010,	 ORE_011,	 ORE_012,	 ORE_014,	 ORE_015,	 ORE_016,	 ORE_017,	 ORE_018,	 ORE_020,	
ORE_021,	 ORE_022,	 ORE_024,	 ORE_026,	 ORE_027,	 ORE_028,	 ORE_030,	 ORE_031,	 ORE_033,	
ORE_035,	ORE_036,	ORE_038,	ORIO_001,	ORIO_005	

	

VICINITY-FUNC-UCR090	 VICINITY	should	support	removal	of	the	value	added	services.	

VICINITY	 should	 support	 removal	 of	 any	 value	 added	 service.	 VICINITY	 should	 notify	 the	 service	
consumers.	VICINITY	should	store	trace	audit	trail	for	each	service	removal.	

Considered	requirements:	

UC	0330	

 Device	lifecycle	requirements	

This	 set	 of	 requirements	 defines	 functionality	 for	 registration	 of	 a	 new	 IoT	 device,	 its	 profile	
management	in	VICINITY	and	its	removal	when	it	is	not	necessary	anymore.	

VICINITY-FUNC-UCR100	 VICINITY	should	support	registration	of	the	new	IoT	device.	

The	VICINITY	should	provide	means	to	register	a	new	 IoT	device.	Registration	might	be	manual	or	
automatic.	

The	registration	process	should	include	at	least:	

• the	semantic	matching	of	the	IoT	device,	
• creating	the	IoT	device	profile	and	
• initialize	the	IoT	device	visibility	and	accessibility.	

Considered	requirements:	

UC	0210	

	

	

	 D1.5	VICINITY	technical	requirements	specification	 42	

	 	

	
Public	

	

	

VICINITY-FUNC-UCR110	 VICINITY	should	support	the	IoT	device	profile	management.	

VICINITY	should	manage	(create,	provide,	update,	remove	and	list)	a	profile	for	each	IoT	device	visible	
and	accessible	in	VICINITY.	The	IoT	device	profile	should	include	at	least:	

• device	name,	
• device	avatar,	
• type	of	device,	
• device	group	membership,	
• list	of	data	sources,	
• identification	of	data	owners,	
• authorization	rules	and	privacy	attributes.	

Considered	requirements:	

UC	0215,	UC	0220,	VICINITY-BR-ENR050	

	

VICINITY-FUNC-UCR120	 VICINITY	 should	 support	 IoT	 device’s	 semantic	 data	mediation	
mapping.	

VICINITY	 should	 provide	 means	 to	 semantically	 map	 the	 IoT	 device	 and	 provide	 semantic	 data	
mediation	 mapping	 for	 devices	 throughout	 the	 whole	 lifecycle	 of	 the	 device	 including	 device	
registration	or	device	change.	

Considered	requirements:	

UC	0215,	UC	0210,	UC	0425,	ORE_001,	ORE_002,	ORE_003,	ORE_004,	ORE_005,	ORE_006,	ORE_007,	
ORE_009,	 ORE_010,	 ORE_011,	 ORE_012,	 ORE_013,	 ORE_014,	 ORE_015,	 ORE_017,	 ORE_019,	
ORE_020,	ORE_021,	ORE_025,	ORIO_002,	ORIO_004	

	

VICINITY-FUNC-UCR130	 VICINITY	should	support	removal	IoT	devices.	

VICINITY	should	support	removal	of	IoT	devices.	VICINITY	should	notify	IoT	device	data	consumers.	
The	VICINITY	should	store	the	audit	trail	for	each	IoT	device	removal.	

Considered	requirements:	

UC	0230	

	

	

	 D1.5	VICINITY	technical	requirements	specification	 43	

	 	

	
Public	

	

	

 VICINITY	Clients	requirements	

VICINITY-FUNC-UCR140	 VICINITY	 should	 provide	 means	 to	 manage	 lifecycle	 of	 the	
VICINITY	Client.	

The	VICINITY	Client	lifecycle	should	include	at	least:	

• Installing	of	VICINITY	Agent;	
• Register	VICINITY	Agent/Adapter;	
• Manual	removal	or	uninstalling	of	the	VICINITY	Agent	from	VICINITY;	
• Removal	of	the	VICINITY	Adapter;	

Events	of	the	VICINITY	Client	lifecycle	changes	should	be	stored	in	audit	trails.	

VICINITY	should	provided	status	of	each	VICINITY	Client	such	as	online,	offline,	unknown.	

Considered	requirements:	

UC	0420,	UC	0423,	UC	0425,	UC	0430,	UC	0440,	UC	0447,	UC	0448,	UC	0460	

	

VICINITY-FUNC-UCR145	 VICINITY	Client	 should	provide	means	 to	 facilitate	 exchange	of	
data	 between	 integrated	 infrastructures	 using	 semantic	
interoperability.	

The	VICINITY	 Client	 should	 be	 able	 to	 facilitate	 data	 exchange	 (such	 as	 data	measurements,	 data	
measurements	history,	device	comments)	between	other	VICINITY	Clients.	

The	 communication	 protocols	 should	 be	 standardized	 per	 domain.	 The	 communication	 channels	
should	be	in	line	with	interoperability	setup	rules.	

The	VICINITY	Client	should	be	able	to	simulate	supported	type	of	IoT	objects	from	neighbourhood	in	
integrated	infrastructure.	

Considered	requirements:	

UC	 0450,	 UC	 0455,	 ORE_003,	 ORE_008,	 ORE_013,	 ORE_014,	 ORE_015,	 ORE_028,	 ORE_029,	
ORIO_004,	ORIO_005,	VICINITY-BR-BLD010,	VICINITY-BR-BLD020,	VICINITY-BR-BLD030,	VICINITY-BR-
BLD060,	 VICINITY-BR-BLD080,	 VICINITY-BR-ENR010,	 VICINITY-BR-ENR020,	 VICINITY-BR-ENR030,	
VICINITY-BR-ENR040,	 VICINITY-BR-TRA070,	 VICINITY-BR-TRA110,	 VICINITY-BR-OR001,	 VICINITY-BR-
OR002,	VICINITY-BR-OR003,	VICINITY-BR-OR004,	VICINITY-BR-OR005,	VICINITY-BR-OR006,	VICINITY-
BR-OR007,	 VICINITY-BR-OR008,	 VICINITY-BR-OR009,	 VICINITY-BR-OR010,	 VICINITY-BR-OR011,	
VICINITY-BR-OR012,	 VICINITY-BR-OR014,	 VICINITY-BR-OR015,	 VICINITY-BR-OR016,	 VICINITY-BR-
OR017,	VICINITY-BR-OR019,	VICINITY-BR-OR024,	VICINITY-BR-OR026,	VICINITY-BR-OR028,	VICINITY-
BR-OR029,	 VICINITY-BR-OR030,	 VICINITY-BR-OR031,	 VICINITY-BR-OR032,	 VICINITY-BR-OR033,	
VICINITY-BR-OR034,	VICINITY-BR-OR036,	VICINITY-BR-OR037,	VICINITY-BR-OR039,	VICINITY-BR-010,	
VICINITY-BR-040	

	

	 D1.5	VICINITY	technical	requirements	specification	 44	

	 	

	
Public	

	

	

 Supporting	requirements	

VICINITY-FUNC-UCR150	 VICINITY	should	support	grouping	of	IoT	objects.	

The	grouping	of	IoT	objects	enables	to	perform	one	action	on	the	whole	group.	The	grouping	should	
support:	

• create	a	group;	
• add	and	remove	objects	from	the	group;	
• remove	a	group.	

Considered	requirements:	

UC	GRP010,	UC	GRP020	

	

VICINITY-FUNC-UCR160	 VICINITY	should	support	searching	functionality	for	IoT	objects.	

VICINITY	should	support	users	to	search	IoT	objects	at	least	based	on:	

• name;	
• type;	
• location.	

Considered	requirements:	

UC	SRC010	

	

VICINITY-FUNC-UCR165	 VICINITY	should	support	digital	signature	of	terms	and	conditions	
to	connecting	to	VICINITY.	

VICINITY	should	support	at	least:	

• Management	of	terms	and	conditions	to	connecting	to	VICINITY;	
• Confirmation	of	terms	and	conditions	by	VICINITY	Organization	Administrator.	

Considered	requirements:	

VICINITY-BR-HLT040						

	

	

	 D1.5	VICINITY	technical	requirements	specification	 45	

	 	

	
Public	

	

	

VICINITY-FUNC-UCR170	 VICINITY	 should	 support	management	 of	 access	 to	 IoT	 devices	
and	value	added	services	based	on	terms	and	conditions.	

VICINITY	should	support	at	least:	

• Association	of	terms	and	conditions	with	a	device	or	a	service;	
• Confirmation	of	terms	and	conditions.	

Considered	requirements:	

UC	LEG010,	UC	LEG020	

	

VICINITY-FUNC-UCR180	 VICINITY	should	support	the	management	of	consent	to	process	
private	data.	

VICINITY	should	support	to	process	private	data	by:	

• Provide	consent	for	processing	of	private	data;	
• Revoke	consent	for	processing	of	private	data.	

Considered	requirements:	

UC	PRV010,	UC	PRV050,	VICINITY-BR-TRA020,	VICINITY-BR-TRA040	

	

VICINITY-FUNC-UCR190	 VICINITY	should	support	management	of	users	and	organizations	
and	their	profiles	and	roles.	

VICINITY	should	support	users’	life	cycle	at	least	with	the	following	functionalities:	

• User	registration	in	VICINITY;	
• User	profile	editing	and	visibility	set-up;	
• User	role	management;	
• User	removal.	

VICINITY	should	support	organization	life	cycle	at	least	with	following	functionalities:	

• Organization	registration;	
• Organization	profile	editing	and	visibility	set-up;	
• Organization’s	user	association;	
• Organization	removal.	

Considered	requirements:	

UC	 SEC030,	 UC	 SEC060,	 UC	 COM030,	 UC	 COM040,	 UC	 COM050,	 UC	 COM070,	 UC	 COM120,	 UC	
COM160	

	

	 D1.5	VICINITY	technical	requirements	specification	 46	

	 	

	
Public	

	

	

 Quality	considerations	and	non-functional	requirements	

 User	experience	

An	 excellent	 user	 experience	 with	 the	 VICINITY	 solution	 should	 increase	 the	 user	 efficiency	 and	
satisfaction,	reduce	users	training	and	support	costs.	Thus,	functional	design	should	bear	in	mind	the	
look	and	feel	of	the	application	and	usability.	

The	 user	 experience	 is	 mostly	 covered	 by	 learnability,	 efficiency	 and	 memorability	 requirements.	
Learnability	minimises	the	learning	curve	of	the	basic	features	and	memorability	focus	on	minimising	
the	re-learning	curve.	Efficiency	requirements	define	the	time	needed	to	perform	tasks	once	the	user	
has	mastered	them.	Challenges	posed	by	user	experience	can	be	addressed	by	designing	the	solutions	
around	information	users	need	to	access.	Moreover,	functionality	should	be	designed	based	on	best	
practices	in	particular	functional	domains	(such	as:	configuration	files	for	administrators	personal	and	
a	simple	user	interface	for	managing	neighbourhood).	

VICINITY-NFUNC-USR010	 VICINITY	 should	 support	 easy	 to	 learn	 approach	 for	 any	 VICINITY	
User.	

VICINITY	design	should	be	support:	

• look	and	feel	helping	users	(regardless	of	their	role)	to	easily	identify	possible	actions;	
• reuse	widely	implemented	use	interface	design	patterns.	

Considered	requirements:	

VICINITY-B&D-BLD07,	 VICINITY-B&D-TEC01,	 ORE_039,	 ORI_001,	 ORI_003,	 ORI_006,	 VICINITY-BR-
TRA060,	VICINITY-BR-HLT020,	VICINITY-BR-OR025			

	

VICINITY-NFUNC-USR020	 VICINITY	should	support	efficient	usage	by	any	VICINITY	User.	

VICINITY	design	in	terms	of	functionality,	look	and	feel	should	support	users	(regardless	of	their	role)	
to	 perform	 learned	 basic	 tasks	 quick	 with	 minimum	 error	 (such	 as:	 personalization	 of	 displayed	
information,	 localization	 of	 the	 user	 interface,	 user	 interface	 responsive	 to	 type	 of	 device	 and	 its	
display,	etc.).	

Considered	requirements:	

VICINITY-B&D-BLD07,	 VICINITY-B&D-TEC01,	 ORE_039,	 ORI_001,	 ORI_003,	 ORI_006,	 VICINITY-BR-
TRA060,	VICINITY-BR-HLT020,	VICINITY-BR-OR025			

	

	

	 D1.5	VICINITY	technical	requirements	specification	 47	

	 	

	
Public	

	

	

VICINITY-NFUNC-USR030	 VICINITY	should	support	memorable	design	by	any	VICINITY	Users.	

VICINITY	design	in	terms	of	functionality,	look	and	feel	should	support	users	(regardless	of	their	role)	
to	perform	basic	tasks	quickly	with	minimum	error,	such	that	users	can	recall	the	process	to	follow,	
even	after	a	period	no	using	the	interface.	

Considered	requirements:	

VICINITY-B&D-BLD07,	 VICINITY-B&D-TEC01,	 ORE_039,	 ORI_001,	 ORI_003,	 ORI_006,	 VICINITY-BR-
TRA060	

	

	 	

	

	 D1.5	VICINITY	technical	requirements	specification	 48	

	 	

	
Public	

	

	

 Technical	requirements	

 Performance	

Performance	 requirements	 define	 time	 (speed,	 latency)	 and	 space	 (scalability,	 capacity,	 stability)	
characteristics	of	the	VICINITY	platform.	By	identifying	such	constraints,	the	tasks	being	handled	by	the	
VICINITY	 framework	 will	 be	 able	 to	 operate	 under	 optimal	 conditions	 towards	 accomplishing	 the	
designated	functions	in	a	fast,	scalable,	stable	and	reliable	manner.	To	that	end,	a	set	of	requirements	
have	been	identified	either	from	previous	experiences	of	related	tasks	or	from	the	relevant	stakeholder	
engagement	as	described	in	D1.2.		

The	 identified	 performance	 constraints	 that	 can	 be	 taken	 into	 consideration	 while	 designing,	
implementing	and	evaluating	the	VICINITY	framework	are	described	below:	

	

VICINITY-NFUNC-PER010	 Response	 time	 of	 the	 VICINITY	 framework	 should	 be	 sufficient	 to	
support	robust	real-time	operation	with	minimum	latency.	

The	 VICINITY	 components	 should	 ensure	 that	 the	 communication	 among	 them	 or	 with	 their	
respective	databases	or	 third	party	 software	will	 provide	 real-time3	data	exchange	 supporting	 the	
following:		

• Real-time	search/querying	in	stored	semantic	data	towards	allowing	smooth	user	experience;	
• The	semantic	search	should	cause	the	minimum	delay	to	the	system’s	operation	(should	be	

put	in	another	asynchronous	thread	to	not	delay	the	process);	
• Fast	enough	response	time	should	allow	the	creation	of	value	added	services	that	depend	on	

processing	of	real-time	data	streams	(e.g.	triggering	of	events	on	abnormal	data	sequence	
detection);	

• Data	prioritization	for	safety	or	emergency	situations.	

Considered	requirements:	

VICINITY-B&D-	TEC02,	ORI_005	

	

																																																													
3	Meaning	 real-time	 depends	 on	 the	 application	 context	 of	 a	 data	 exchange.	 For	 room	 temperature	 control	
application,	real-time	data	exchange	response	time	30	seconds	might	be	enough.	However,	VICINITY	User	would	
consider	response	time	of	IoT	device	search	as	sluggish.	

	

	 D1.5	VICINITY	technical	requirements	specification	 49	

	 	

	
Public	

	

	

VICINITY-NFUNC-PER020	 The	VICINITY	Platform	should	be	scalable	to	unobtrusively	cope	with	
various	operation	levels	and	under	strain	conditions.	

The	overall	VICINITY	framework	system	functionality	and/or	capability	(e.g.	responsiveness,	stability,	
robustness,	etc.)	should	not	be	compromised	under	extended	usage	(i.e.	huge	number	of	concurrent	
users).	

Furthermore,	the	system	should	be	able	to	face	unanticipated	peak	loads	(i.e.	number	of	concurrent	
users	 accessing	 simultaneously	 the	 system	 due	 to	 unpredictable	 spikes),	 without	 deteriorating	 in	
terms	of	efficiency,	functionality,	speed,	etc.	

Considered	requirements:	

ORI_005	

	

VICINITY-NFUNC-PER030	 The	 integrated	 VICINITY	 framework	 as	 well	 as	 the	 VICINITY	
components	 should	 be	 able	 to	 perform	 with	 great	 stability	 and	
cohesion.	

The	 system	 should	 able	 to	 run	 for	 long	 periods4	of	 time,	 without	 data	 corruption,	 slowdown,	 or	
servers	 needing	 to	 be	 rebooted.	 Each	 VICINITY	 component	 should	 be	 able	 to	 handle	 internally	
erroneous	issues	ensuring	stability	for	the	integrated	overall	framework.		

Considered	requirements:	

ORI_005	

	

																																																													
4 	The	 length	 of	 the	 period	 depends	 on	 VICINITY	 components.	 Components	 which	 are	 not	 under	 control	 of	
VICINITY	maintenance	personnel	(such	as	VICINITY	Agent)	should	be	able	to	run	very	long	periods	(e.g.	months	
or	year).	Components	under	control	of	VICINITY	maintenance	personnel	will	be	proactively	monitored.	

	

	 D1.5	VICINITY	technical	requirements	specification	 50	

	 	

	
Public	

	

	

VICINITY-NFUNC-PER040	 The	 overall	 VICINITY	 system	 should	 support	 recover	 from	 out	 of	
service	periods.	

The	VICINITY	framework	should	be	reliable	and	robust	and	therefore	should	support	to	overcome	the	
following	situations:		

• If	 the	VICINITY	framework	or	one	of	 its	components	comes	back	online	after	scheduled	or	
unscheduled	downtime,	the	users	should	be	able	to	see/do	everything	they	expect	(system	
able	to	resume	at	the	correct	point).		

• if	 some	parts	of	 the	network	are	unreachable/disconnected,	 the	system	should	be	able	 to	
manage	the	whole	operation	with	historically	stored/temporary	data.	

• If	one	of	the	IoT	Infrastructures	transmits	unreliable	data	due	to	issues	with	the	connection	
or	to	a	malfunction	of	a	component	out	of	the	VICINITY	framework,	the	system	should	be	able	
to	 interpret	 (to	 a	 degree)	 the	 data	 using	 historically	 stored	 information	 to	 continue	 its	
operation.	

Considered	requirements:	

ORI_005	

	

VICINITY-NFUNC-PER050	 The	 VICINITY	 system	 should	 be	 able	 to	 store	 and	 retrieve	 large	
amounts	of	meta-data	

Due	to	the	nature	of	the	VICINITY	platform,	 large	amounts	of	data	and	meta-data	(actual	 IoT	data	
should	be	stored	separately)	are	expected	to	be	exchanged	in	real-time	operation.	Thus,	it	is	essential	
that	the	information	exchange	within	the	VICINITY	framework	should	not	be	affected	by	the	amount	
of	data.		

Considered	requirements:	

ORI_005	

Note,	 that	 these	performance	requirements	define	constraints	 for	VICINITY	components.	There	are	
also	 requirements	 abstracted	 from	 environment	 conditions	 and	 constraints	 which	 cannot	 be	
influenced	(e.g.	low	bandwidth	between	VICINITY	Clients,	etc.).	

 Availability	

Availability	of	the	system	defines	the	system	status	when	a	user	can	obtain	the	promised	services/	
goods/	products	of	the	system.	If	the	system	cannot	deliver	the	intended	service	is	considered	to	be	
“unavailable”.	Availability	of	the	system	is	influenced	by	various	factors	such	as:	user’s	device	used	to	
access	VICINITY,	 communication	between	device	and	VICINITY,	VICINITY	 software	 components	 and	
hardware	 platform	 where	 VICINITY	 components	 are	 running,	 etc.	 Some	 of	 these	 factors	 such	
availability	of	VICINITY	software	components	and	hardware	platform	can	be	fully	or	partially	influenced	
by	the	design	and	implementation	of	the	VICINITY	service.	However,	factors	such	as	user’s	device	or	
connected	 interoperable	 infrastructures,	 quality	 of	 connection	 cannot	 be	 influenced.	 Thus,	 the	
VICINITY	 availability	 should	 be	 calculated	 from	 the	 availability	 of	 VICINITY	 software	 components,	

	

	 D1.5	VICINITY	technical	requirements	specification	 51	

	 	

	
Public	

	

	

platform	 where	 VICINITY	 software	 components	 are	 deployed	 and	 communication	 connections	
between	components	within	the	platform	and	connection	to	closest	public	internet	connection.	

Based	on	findings	during	stakeholders’	workshop	summarized	in	D1.2	the	availability	of	the	VICINITY	
services	should	be	24x7	including	acceptable	downtimes	according	to	application	context.	

High-availability	of	VICINITY	services	can	be	achieved	only	if	the	high-available	principles	are	applied	
during	design,	implementation	and	deployment	of	VICINITY	components.	

VICINITY-NFUNC-AVL010	 VICINITY	 should	 support	 24x7	 service	 availability	 with	 acceptable	
downtime	2%.	

The	VICINITY	service	availability	should	be	achieved	through	high-available	VICINITY	components	and	
underlying	infrastructure	such	as:	

• VICINITY	components	horizontal	and	vertical	scalability	or	
• infrastructure	service	load	balancing	and	virtualization.

Considered	requirements:	

ORI_009	

	

VICINITY-NFUNC-AVL020	 Principles	for	elimination	of	single	point	of	failure	should	be	applied	
during	design	VICINITY	components.	

Elimination	of	the	single	point	of	failure	and	reliable	crossovers	means	that	failed	component	does	
not	mean	failure	of	the	entire	system.

Considered	requirements:	

ORI_009	

	

VICINITY-NFUNC-AVL030	 Means	 to	 recognize	 VICINITY	 components	 failure	 or	 other	 issues	
should	be	provided	by	VICINITY.	

VICINITY	should	provide	means	(such	as:	activities	logins,	monitoring	interfaces,	etc.)	that	can	provide:	
• information	about	important	events,
• warning	about	system	functionality	degradation,
• failure	of	one	functionality,	component	or	whole	VICINITY	solution.

VICINITY	should	be	able	 to	monitor	 the	external	 interfaces	as	well	as	 internal	 failures,	changes	on	
these	interfaces	can	cause	degradation	or	failure	of	VICINITY	functionalities.

Considered	requirements:	

ORI_009	

	

	 D1.5	VICINITY	technical	requirements	specification	 52	

	 	

	
Public	

	

	

 Maintainability	

Maintainability	requirements	defines	ability	of	the	system	to	react	on	changes	in	environment	where	
system	 is	 deployed,	 changes	 and	 issues	 in	 system	 itself.	Maintenance	 requirements	 influence	 the	
structure	of	the	system,	operational	functionalities	of	the	system	and	requirements.	

VICINITY-NFUNC-MNT005	 VICINITY	Adapter	 should	be	 implemented	below	average	 software	
engineer	

VICINITY	Adapter	will	be	implemented	in	an	integrated	infrastructure	by	personnel	who	do	not	have	
extensive	knowledge	in	VICINITY	Architecture,	IoT	interoperability	and	semantics,	etc.	

Implementation	of	the	VICINITY	Adapter	should	be	supported	by:	

• guidelines	and	
• examples5.	

Considered	requirements:	

ORI_002	

	

VICINITY-NFUNC-MNT007	 VICINITY	should	adopt	modular	architecture	

VICINITY	architecture	should	be	broken	down	into	self-contained	modules,	which	can	be	separately:	

• designed,	
• implemented,	
• tested,	
• validated,	
• updated	and	
• in	certain	cases	replaced.	

Considered	requirements:	

ORI_003	

	

																																																													
5 	Automatic	 configuration	 of	 the	 VICINITY	 Adapter	 and	 VICINITY	 Gateway	 API	 should	 be	 considered	 during	
VICINITY	Architecture	design.	

	

	 D1.5	VICINITY	technical	requirements	specification	 53	

	 	

	
Public	

	

	

VICINITY-NFUNC-MNT010	 VICINITY	Components	should	provide	means	to	identify	and	resolve	
resource	budget	issues	

VICINITY	should	provide	means	(such	as:	activities	logins,	monitoring	interfaces,	etc.)	that	can	provide	
resource	budgets	(current,	average)	on	level	of:	

• Hardware	(such	as	CPU,	Memory,	Storage	space,	Bandwidth	and	energy	consumption);	
• Platform	 on	which	 VICINITY	 components	 are	 running	 or	 using	 (such	 as	 platform	 resource	

usage,	data	fragmentation,	event	measures,	etc.);	
• VICINITY	components’	specific	resources	and	internal	/	external	VICINITY	interfaces;	

Considered	requirements:	

ORI_003	

	

VICINITY-NFUNC-MNT020	 VICINITY	 Components	 should	 be	 designed	 to	 anticipate	 most	
probable	resource	budget	issues.	

Design	 of	 VICINITY	 Components	 should	 consider	 best	 practices	 to	 reduce	 impact	 of	 the	 resource	
budget	on	various	level:	

• HW	or	ICT	level	(e.g.	DNS	load	balancing);	
• Virtualization	or	platform	as	a	service	(e.g.	dynamic	resource	provision);	
• Component	architecture	(e.g.	component	vertical	or	horizontal	clustering).	

Considered	requirements:	

ORI_003	

	

VICINITY-NFUNC-MNT030	 VICINITY	should	adopt	and	use	open	&	interoperable	standards	on	
internal	and	external	interfaces	or	isolate	dependencies	by	design	to	
support	reusability	and	portability.	

VICINITY	should	adopt	existing	open	&	interoperable	standards	or	“de-facto”	standards	on	following	
layers:	

• HW,	ICT	and	Platform;	
• Application	/	Service	level.	

On	 application	 /	 service	 level	 VICINITY	 should	 apply	 dependencies	 isolation	 techniques	 such	 as	
adapter	or	bridge	patterns.	

Considered	requirements:	

ORI_004,	ORI_007	

	

	

	 D1.5	VICINITY	technical	requirements	specification	 54	

	 	

	
Public	

	

	

VICINITY-NFUNC-MNT040	 VICINITY	should	provide	means	to	migrate	its	components	and	data	
to	different	version.	

Each	component	and	interface	of	VICINITY	tends	to	change	in	time,	thus	there	should	be	means	such	
as:	

• guidelines,	
• tools	or		
• automatic	migration	mechanisms	

to	allow	updating	of	components	and	managed	data.	

VICINITY	Component	should	support	backward	compatibility	on	external	interfaces	by	design.	

Considered	requirements:	

ORI_004	

	

VICINITY-NFUNC-MNT050	 VICINITY	should	provide	tools	to	simplify	the	installation	of	VICINITY	
components		

VICINITY	 should	 provide	means	 to	 build,	 package,	 deploy/	 install	 VICINITY	 components.	 Building,	
packaging	and	deploying	/	installing	should	preferably	be	implemented	by	automated	tools	(such	as:	
mobile	 device	 application	 stores,	 platform	 deployment	 tools	 offered	 by	 Heroku	 cloud	 platform,	
maven/npm	packagers,	installation	guides,	etc.).	

Considered	requirements:	

ORI_003	

	

	

	 D1.5	VICINITY	technical	requirements	specification	 55	

	 	

	
Public	

	

	

VICINITY-NFUNC-MNT060	 VICINITY	Components	should	allow	changing	their	behaviour	off-line	
or	in	runtime.	

A	VICINITY	 solution	 and	 its	 components	 should	 be	 designed	 to	 support	 components	 functionality	
changes	through	design	patterns	introducing	high	flexibility	and	configurability	such	as:	integration	
patterns,	plug-in	architecture,	dependency	injection,	etc.	

From	an	implementation	point	of	view,	the	VICINITY	solution	should	be	able	to	configure	its	interfaces	
(internal	/	external)	and	components	itself	during	run-time	or	offline.	Configured	attributes	might	be:	

• HW,	ICT	or	PaaS	level:	number	of	servers,	processors,	memory	being	used,	load	balancers;	
• Data	storage	level:	connections	strings,	authentication	mechanism	configuration	(certificates,	

credentials);	
• Components	 level:	 logging	 configuration	 (file	 location	 /	 level),	 vertical/	 horizontal	 cluster	

configuration,	 external	 and	 internal	 interfaces	 configuration	 (such	 as	 location),	 other	
application	specific	settings.	

Considered	requirements:	

ORI_003	

 Security	considerations	

The	VICINITY	is	potentially	exposed	to	security	threats	including:	

• Masquerade;	
• Eavesdropping;	
• Unauthorized	access;	
• Loss	or	corruption;	
• Repudiation;	
• Forgery;	
• Denial	of	service.	

According	to	ITU-T	Rec.	E.408	(05/2004)6	the	following	security	measures	minimize	the	impact	of	the	
threats:	

• Verification	of	identities	of	VICINITY	users,	VICINITY	Clients	infrastructures	and	IoT	objects;	
• Controlled	access	and	authorization	of	VICINITY	users	and	VICINITY	Clients;	
• Protection	 of	 confidentiality	 of	 information	 exchanged	 between	 VICINITY	 Clients	

infrastructures	and	with	VICINITY	in	general;	
• Protection	 of	 data	 integrity	 exchanged	 between	 VICINITY	 Clients	 and	 meta-data	 integrity	

stored	within	VICINITY;	
• Accountability	 services	 that	 VICINITY	 users	 and	 VICINITY	 Clients	 are	 responsible	 only	 for	

activities	they	performed;	

																																																													
6	http://www.itu.int/rec/T-REC-E.408-200405-I	

	

	 D1.5	VICINITY	technical	requirements	specification	 56	

	 	

	
Public	

	

	

• Activity	logging	and	audit	of	operation	performed	by	VICINITY	users	and	VICINITY	Clients	on	
VICINITY	components;	

• Alarm	reporting	of	potential	selected	security	breaches.	

5.2.2.4.1. Verification	of	identities	

VICINITY-NFUNC-SEC010	 VICINITY	 should	 provide	 capabilities	 to	 establish	 and	 verify	 the	
claimed	 identity	 and	 integrity	 of	 any	 actor	 interacting	 with	 any	
external	or	internal	interface	of	VICINITY	Components.		

Identities	 of	 actors	 that	 access	 external	 or	 internal	 interfaces	 of	 VICINITY	 Components	 should	 be	
verified.	Three	types	of	identity	verification	might	be	considered:	

• User	authentication	
• Peer	entity	authentication	and	
• Data	origin	authentication.	

Authentication	should	provide	proof	on	 the	actor’s	 identity	 for	 the	certain	 instance	of	a	 time	and	
identity	should	be	repeatedly	verified.	

The	credential	management	capabilities	should	be	provided	to	generate,	change,	recover,	revoke	and	
delete	credentials.	

For	each	authentication	mechanism,	a	specific	policy	needs	to	be	defined.	

Threats	addressed:	masquerade,	unauthorized	access	

Considered	requirements:	

VICINITY-BR-SEC010,	VICINITY-BR-SEC020,	VICINITY-BR-SEC030,	VICINITY-BR-SEC040,	VICINITY-B&D-	
SEC04,	ORI_008,	VICINITY-BR-TRA050,	VICINITY-BR-020	

Note,	that	verification	of	identities	such	as	IoT	objects	should	be	performed	as	well,	e.g.	IoT	objects	
verification	during	discovery.	

5.2.2.4.2. Controlled	access	and	authorization	

Support	for	both	identity-based	and	role-based	access	management	should	be	provided	by	VICINITY.	
Access	control	should	enable	fine	grained	definition	of	which	IoT	objects	(their	data	fields	if	necessary)	
or	meta-data	elements	can	be	visible	for	different	actors	

Management	of		access	control	privileges	associated	with	the	entities	that	are	authorized	for	access,	
privilege	management	should	be	utilized.	

	

	 D1.5	VICINITY	technical	requirements	specification	 57	

	 	

	
Public	

	

	

VICINITY-NFUNC-SEC020	 VICINITY	 should	 provide	 capabilities	 to	 ensure	 that	 actors	 are	
prevented	from	gaining	access	to	information	or	resources	that	they	
are	not	authorized	to	access.		

The	privilege	management	enabling	mechanisms	should	have	following	properties:	

• Dedicated	owner	
• Reasonable	defaults	
• Explicit	grant	
• Privilege	granting	only	by	the	owner	
• Privilege	recovery	

Threats	addressed:	Masquerade,	Denial	of	service	

Considered	requirements:	

VICINITY-BR-SEC010,	 VICINITY-BR-SEC020,	 VICINITY-BR-SEC030,	 VICINITY-BR-SEC040,	 VICINITY-BR-
SEC050,	VICINITY-B&D-SEC01,	ORI_008,	VICINITY-BR-HLT060,	VICINITY-BR-020,	VICINITY-BR-040	

Note,	that	a	blocking	mechanism	for	IoT	objects,	and	any	request	sending	should	be	considered	as	well	
in	detailed	design	to	mitigate	of	the	spamming	or	flooding	risk.	

Note,	 that	 in	many	countries,	 there	 is	a	 legal	 requirement	 that	historic	meta	data	which	 relates	 to	
communications	relevant	to	an	identifiable	individual	must	be	made	available	to	security	services	as	
necessary	(see	UK	Regulation	of	Investigatory	Powers	Act	2000).	

5.2.2.4.3. Protection	of	confidentiality	

VICINITY-NFUNC-SEC030	 VICINITY	should	provide	capabilities	to	ensure	the	confidentiality	of	
stored	and	communicated	data.		

VICINITY	should	ensure	that	data	is	not	disclosed	to	any	actors	unless	they	have	been	authorized	to	
access	those	data.	

The	level	of	confidentiality	should	be	considered	on	the	following	levels:	

• System	 confidentiality	 (e.g.	 reducing	 the	 knowledge	 of	 security	 architecture,	 technology	
(including	version)	used);	

• Connection	level	(e.g.	end-to-end	security);	
• On	attributes	level	(e.g.	confidentiality	of	selected	attributes	of	data).	

Considered	requirements:	

VICINITY-BR-SEC010,	 VICINITY-BR-SEC020,	 VICINITY-BR-SEC030,	 VICINITY-B&D-	 ENR07,	 ORI_008,	
VICINITY-BR-ENR060,	VICINITY-BR-BLD040,	VICINITY-BR-TRA040,	VICINITY-BR-020	

5.2.2.4.4. Protection	of	data	integrity	

Data	 integrity	 function	 is	 to	 ensure	 that	 the	 data	 has	 not	 been	 changed,	 destroyed,	 or	 lost	 in	 an	
unauthorized	or	accidental	manner.	

	

	 D1.5	VICINITY	technical	requirements	specification	 58	

	 	

	
Public	

	

	

VICINITY-NFUNC-SEC040	 VICINITY	 should	be	able	 to	guarantee	 the	 integrity	of	 systems	and	
stored	and	communicated	data.	

The	VICINITY	should	consider	following	data	integrity	properties:	

• Arrange	for	modifications	to	be	detectable;	
• Standard	cryptographic	one-way	hash	functions	and	digital	signature	algorithms;	
• Openness,	e.g.	all	algorithms	shall	be	published;	
• No	proprietary	verification	requirements;	
• Different	algorithm	for	digital	signatures	(data	integrity)	and	encryption	(data	confidentiality).	

Threats	addressed:	Loss	or	corruption	of	information	

Considered	requirements:	

VICINITY-BR-SEC020,	VICINITY-BR-SEC030,	VICINITY-B&D-SEC02,	ORI_008,	VICINITY-BR-020	

5.2.2.4.5. Accountability	

VICINITY-NFUNC-SEC050	 VICINITY	 should	 provide	means	 so	 that	 an	 entity	 cannot	 deny	 the	
responsibility	for	any	of	its	performed	actions	as	well	as	their	effects.	

Its	function	is	to	ensure	that	the	actions	of	a	system	entity	may	be	traced	uniquely	to	the	originating	
entity,	which	can	then	be	held	responsible	for	its	actions.	

It	is	important	that	all	actions	shall	be	attributable	to	an	authenticated	entity.	

Threats	addressed:	Repudiation	and	forgery	

Considered	requirements:	

VICINITY-BR-SEC040,	VICINITY-B&D-LEG05,	ORI_008,	VICINITY-BR-TRA040,	VICINITY-BR-020	

5.2.2.4.6. Activity	logging	and	audit	

Activity	 logging	 and	 audit	 function	 is	 to	 provide	 chronological	 record	 of	 system	 activities	 that	 is	
sufficient	to	enable	the	reconstruction	and	examination	of	the	sequence	of	environments	and	activities	
surrounding	or	 leading	to	an	operation,	procedure,	or	event	 in	a	security-relevant	transaction	from	
inception	to	results.	Such	audit	information	can	be	used	to	analyse	security	issues	or	disputes7.		

																																																													
7	In	some	countries	there	is	an	obligation	to	provide	meta-data	to	security	services	upon	reasonable	request.	

	

	 D1.5	VICINITY	technical	requirements	specification	 59	

	 	

	
Public	

	

	

VICINITY-NFUNC-SEC060	 VICINITY	should	provide	a	capability	to	track	activities	on	the	system	
with	a	record	of	individuals	or	entity	that		instigated	the	activity.		

The	activity	logging	and	audit	should	have	following	properties:	

• “Append	only”	mode;	
• Detectable	modifications;	
• Precise	ordering	and	timing;	
• Open	and	standardized	format;	
• Multi-tenant	support;	

Threats	addressed:	Masquerade,	Unauthorized	access,	Repudiation,	Forgery	and	Denial	of	Service	

Considered	requirements:	

VICINITY-BR-SEC040,	 VICINITY-BR-SEC050,	 VICINITY-B&D-	 HLT03,	 VICINITY-B&D-SEC03,	 ORI_008,	
VICINITY-BR-HLT030,	VICINITY-BR-020	

5.2.2.4.7. Alarm	reporting	

Alarm	reporting	function	is	to	send	notification	of	selected	security	event	(possible	breach	of	security)	
to	selected	recipients.	

VICINITY-NFUNC-SEC070	 VICINITY	should	provide	means	to	send	notification	in	case	selected	
security	event	occurs.	

Notification	should	be	attributed	to	the	subject	and	object	of	a	security	event	including	the	context	
in	which	the	event	occurred.	

Any	alarm	should	be	subject	of	activity	logging	and	audit.	

Threats	addressed:	Masquerade,	Unauthorized	access,	Lost	or	corruption	of	information	and	Denial	
of	Service.	

Considered	requirements:	

VICINITY-BR-SEC010,	 VICINITY-BR-SEC020,	 VICINITY-BR-SEC030,	 VICINITY-BR-SEC040,	 VICINITY-BR-
SEC050,	ORI_008	

	

	 	

	

	 D1.5	VICINITY	technical	requirements	specification	 60	

	 	

	
Public	

	

	

 Privacy	considerations	

Privacy	 by	 design 8 	must	 be	 the	 heart	 of	 the	 VICINITY	 architecture	 and	 implementation.	 Privacy	
requirements	define:	

• constraints	for	processing	of	sensitive	data	within	the	VICINITY;	
• means	to	foster	privacy	between	integrated	VICINITY	Clients	infrastructures.	

Data	exchanged	between	integrated	VICINITY	Clients	infrastructures	can	be	twofold:	

• information	provided	by	shared	IoT	objects	(such	as	IoT	devices	or	value	added	services)	and,	
• meta-data	defining	means	to	exchange	information	(such	as	information	type,	location,	events	

accepting,	security	measures	applied,	etc.).	

Note,	 that	 information	 provided	 by	 shared	 IoT	 objects	 may	 include	 sensitive	 information	 such	 as	
private	data.	On	the	other	hand,	it	is	assumed	that	some	meta-data	cannot	be	linked	to	an	identifiable	
person,	or	components	known	to	be	owned	by	an	identifiable	person.	Such	meta-data	is	considered	
not	to	include	any	sensitive	data.	It	contains	only	meta-data	necessary	to	exchange	information.	

Interoperability	between	VICINITY	Clients’	infrastructures	should	be	set-up	based	on	impersonal	meta-
data	 information	provided	by	 IoT	objects.	Based	on	 the	 interoperability	 set-up	 the	VICINITY	 set-up	
communication	 channels	 and	 facilitates	 exchange	 of	 information	 between	 VICINITY	 Clients’	
infrastructure.	

Separating	 the	 information	 and	meta-data	 enables	 to	 facilitates	 exchange	 of	 information	 between	
VICINITY	Clients’	infrastructures	based	on	meta-data	without	need	to	know	the	content	of	exchanged	
information	is	an	aspect	of	“privacy	by	design”;	

VICINITY-NFUNC-PRV010	 VICINITY	 should	 only	 process	 and	manage	meta-data	 necessary	 to	
facilitate	 exchange	 of	 information	 between	 VICINITY	 Clients’	
infrastructures	from	privacy	point	of	view.	

Meta-data	describing	exchanged	information	should	include	at-least:	

• identification	of	IoT	Object	providing	information;	
• location	of	IoT	Object	(such	as	URI);	
• meta-data	about	information	structure	(such	as	encoding);	
• properties	of	information	(such	as	name,	units,	etc.);	
• security	means	description	to	access	information.	

Considered	requirements:	

ORI_008,	VICINITY-BR-020	

	

Exchanging	sensitive	information	should	be	done	on	peer-to-peer	basis	via	interoperability	set-up.	The	
interoperability	 is	 set-up	 based	 on	willingness	 of	 information	 exchange,	 however	 it	 can	 be	 guided	
based	 on	 sensitivity	 of	 the	 information	 and	 trust	 between	 peers.	 Handling	 of	 higher	 sensitivity	

																																																													
8	https://www.iab.org/wp-content/IAB-uploads/2011/03/fred_carter.pdf		

	

	 D1.5	VICINITY	technical	requirements	specification	 61	

	 	

	
Public	

	

	

information	 is	 directly	 proportional	 to	 need	 for	 higher	 trust	 between	 peers.	 While	 the	 level	 of	
sensitivity	 information	and	 trust	between	peers	 is	 strongly	 subjective,	VICINITY	 should	provide	 the	
following	means	to	support	interoperability	set-up	decisions.	

The	Data	controllers	should	provide	 information	on	how	they	process	sensitive	 information	 for	 IoT	
object.	Based	on	 this	 information	 the	data	 subject	 can	decide	 to	 share	 its	 sensitive	 information	by	
providing	a	consent	to	process	private	or	sensitive	information.	

Moreover,	data	controllers	should	provide	means	to	manage	sensitive	information	collected	and	erase	
that	information	for	other	data	subjects.	

5.2.2.5.1. Private	data	processing	information	

VICINITY-NFUNC-PRV020	 VICINITY	 should	 provide	 means	 to	 facilitate	 availability	 of	 private	
data	processing	information.	

The	service	provider	or	IoT	Operator	should	provide	to	device	owners	information	on	how	the	private	
data	are	being	processed	in	VICINITY	Client	infrastructures.	

The	availability	of	data	processing	information	is	not	mandatory.	

The	provided	information	should	be	in-line	with	EC	Regulation	2016/6799	(GDPR).	

Considered	requirements:	

ORI_008,	VICINITY-BR-020	

5.2.2.5.2. Consent	of	data	subject	

VICINITY-NFUNC-PRV030	 VICINITY	should	provide	means	to	create,	submit	and	withdrawn	of	
consent	to	process	private	data.	

The	consent	should	be	submitted	by	a	device	owner	to	allow	the	processing	of	the	potential	private	
data	by	service	provider	or	IoT	Operator.	

The	consent	may	be	withdrawn	by	the	device	owner.	

The	consent	withdrawal	might	require	erasure	of	all	historic	private	data.	

The	content	of	the	consent	should	be	in-line	with	EC	Regulation	2016/679.	(GDPR)	

Considered	requirements:	

VICINITY-B&D-LEG02,	ORI_008,	VICINITY-BR-020	

																																																													
9	http://ec.europa.eu/justice/data-protection/reform/files/regulation_oj_en.pdf	

	

	 D1.5	VICINITY	technical	requirements	specification	 62	

	 	

	
Public	

	

	

5.2.2.5.3. Access	to	private	data,	their	rectification	and	process	restriction	

VICINITY-NFUNC-PRV040	 VICINITY	should	provide	means	to	facilitate	exchange	of	private	data	
between	a	device	owner	and	the	service	provider	or	IoT	Operator.	

VICINITY	should	provide	means	for	the	device	owner	to	facilitate:	

• Access	to	private	data;	
• Private	data	rectification,	where	the	data	subject	or	owner	detects	errors;	
• Private	data	process	restriction.	

The	 private	 data	 provision	 or	 rectification	 can	 be	 manual	 or	 supported	 by	 automatic	 means	 of	
VICINITY	Client	infrastructure.	

Considered	requirements:	

VICINITY-B&D-LEG01,	ORI_008,	VICINITY-BR-020	

5.2.2.5.4. Private	data	erasure	

VICINITY-NFUNC-PRV050	 VICINITY	should	provide	means	 to	 facilitate	device	owner	 to	erase	
private	data	process	by	service	provider	and/or	IoT	Operator.	

The	 private	 data	 erasure	 can	 be	 manual	 or	 supported	 by	 automatic	 means	 of	 VICINITY	 Client	
infrastructure.	

The	provided	information	should	in-line	with	EC	Regulation	2016/679.	(GDPR)	

Considered	requirements:	

VICINITY-B&D-LEG04,	ORI_008,	VICINITY-BR-020	

	

	 	

	

	 D1.5	VICINITY	technical	requirements	specification	 63	

	 	

	
Public	

	

	

 Legal	and	Standardization	requirements	

This	section	is	focusing	on	the	VICINITY	solution	legal	(VICINITY	Licensing	rules)	and	standardization	
(reuse	 and	 openness)	 principles,	 which	 should	 be	 followed	 throughout	 its	 detailed	 design	 and	
implementation.	

 VICINITY	Licensing	

VICINITY-NFUNC-LCS010	 VICINITY	components	for	the	Pilot	trials	should	be	licensed	on	terms	
in-line	with	consortium	agreement.	

Consortium	 agreement	 covers	 the	 exploitation	 and	 access	 right	 principles	 and	 background	within	
consortium.	

Moreover,	VICINITY	components	should	be	in-line	with	dissemination	level.	

Example	of	open	source	licenses	can	be	found	in	the	ANNEX	I.		

Considered	requirements:	

ORI_002	

 Standardization	requirements	

Standards	 relevant	 for	 the	 VICINITY	 project	 have	 been	 elaborated	 in	 deliverable	 D2.1	 Analysis	 of	
Standardisation	 Context	 and	 Recommendations	 for	 Standards	 Involvement.	 Standards	 relevant	 to	
VICINITY	 components	 should	 be	 considered	 in	 the	 architecture	 design,	 detailed	 design	 and	
implementation.	For	selection	of	the	standards	the	following	principles	should	be	followed:	

VICINITY-NFUNC-STD010	 VICINITY	 should	 consider	 reuse	 of	 the	 existing,	 and	 most	 used	
ontologies	in	building,	energy,	transport,	health	and	IoT	domain.	

The	goal	of	VICINITY	is	not	to	build	a	new	VICINITY	Ontology	from	the	scratch,	however	to	reuse	the	
existing	most	used	or	de	facto	standard	ones.		

Considered	requirements:	

VICINITY-B&D-	HLT05,	VICINITY-BR-HLT050,	VICINITY-BR-TRA100,	VICINITY-BR-040	

	

	

	 D1.5	VICINITY	technical	requirements	specification	 64	

	 	

	
Public	

	

	

VICINITY-NFUNC-STD020	 VICINITY	should	consider	reuse	of	open	industrial	standard	security	
and	privacy	solutions,	methods	and	approaches.	

The	aim	of	the	VICINITY	is	to	reuse	existing	open	standardized	solutions	(such	as	OpenSSH,	OpenId),	
methods	 (such	 as	 ITU-T	 Recommendation	 E.408 10)	 and	 approaches	 (such	 as	 HTTP	 over	 TLS,	
SingleSignOn)	in	security	and	privacy.		

Considered	requirements:	

ORI_002	

Note	 that	best	 practice	 in	 Privacy	by	Design	 is	 still	 being	determined,	 for	 example	work	 started	 in	
December	2016	in	the	IEEE	p7002	question	about	Privacy	by	Design.	

	

VICINITY-NFUNC-STD030	 VICINITY	 should	 consider	 reuse	 of	 open	 industrial	 standards	 for	
internal	and	external	communication	interfaces.	

The	open	communications	standards	should	be	used	whenever	possible	to	ensure	solution	openness,	
flexibility	and	maintainability.	

Considered	requirements:	

VICINITY-B&D-TEC03	

Architecture	 and	 software	 engineering	 standards	 elaborated	 in	 D2.1	 have	 been	 selected	 to	 use	
common	 domain	 language	 (such	 as	 Internet	 of	 Things	 Reference	 Architecture)	 and	 representation	
notations	(such	as	UML).	

 Value	added	services	requirements	
Value	 added	 service	 are	 from	 VICINITY	 solution	 point	 of	 view	 external	 components	 which	 will	 be	
connected	to	VICINITY	through	VICINITY	Agent	or	Adapter.	These	services	should	be	able	to	exchange	
information	with	VICINITY	Clients’	infrastructures	in	a	secure	and	privacy	preserving	way.	Exchange	of	
information	should	be	facilitated	by	VICINITY.	Thus,	it	is	necessary	to	introduce	the	minimum	set	of	
high	 level	 functional,	 security	 and	 privacy	 requirements	 that	 should	 be	 supported	 by	 value	 added	
service.	

																																																													
10	http://www.itu.int/rec/T-REC-E.408-200405-I		

	

	 D1.5	VICINITY	technical	requirements	specification	 65	

	 	

	
Public	

	

	

VICINITY-FUNC-VAS010	 Value	 added	 service	 should	 support	 communication	 to	 exchange	
information	through	a	VICINITY	Agent	or	Adapter.	

Value	 added	 service	 should	 be	 able	 to	 exchange	 information	 with	 other	 peers	 (VICINITY	 Clients’	
infrastructures)	 in	 VICINITY.	 The	 communication	 patterns,	 technology,	 encoding	 should	 be	
standardized.	

Considered	requirements:	

ORE_001,	 ORE_002,	 ORE_004,	 ORE_004,	 ORE_005,	 ORE_006,	 ORE_007,	 ORE_009,	 ORE_010,	
ORE_011,	 ORE_012,	 ORE_014,	 ORE_015,	 ORE_016,	 ORE_017,	 ORE_018,	 ORE_020,	 ORE_021,	
ORE_022,	 ORE_024,	 ORE_026,	 ORE_027,	 ORE_028,	 ORE_030,	 ORE_031,	 ORE_033,	 ORE_035,	
ORE_036,	ORE_038,	ORIO_001,	ORIO_005	

	

VICINITY-NFUNC-VAS020	 Value	 added	 service	 should	 provide	 meta-data	 about	 information	
being	exchanged	through	a	VICINITY	Agent	or	Adapter.	

Value	 added	 service	meta-data	 should	 be	 described	 and	 used	 to	 facilitate	 interoperability	 within	
VICINITY.	At	least	the	following	meta-data	should	be	considered:	

• Type	of	the	service	based	on	the	VICINITY	ontology;	
• Name	of	the	service;	
• URIs	of	the	service;	
• Encoding	of	provided	data	from	the	service;	
• Security	properties	of	the	service;	
• Information	sources	properties	(such	as:	type,	name,	units,	etc.).	

Considered	requirements:	

ORIO_004,	ORIO_005	

	

VICINITY-NFUNC-VAS030	 Value	added	service	should	support	authentication	and	authorization	
mechanisms	to	access	meta-data	and	information.	

Constrained	access	to	data	should	protect	value	added	service	against	unauthorized	access	to	meta-
data	and/or	information.	

Considered	requirements:	

VICINITY-BR-SEC010,	VICINITY-BR-SEC020,	VICINITY-BR-SEC030,	VICINITY-BR-SEC040,	ORI_008	

	

	

	 D1.5	VICINITY	technical	requirements	specification	 66	

	 	

	
Public	

	

	

VICINITY-NFUNC-VAS040	 Value	 added	 service	 should	 support	 end-to-end	 encryption	 of	
exchanged	data	with	a	VICINITY	Agent	and/or	Adapter.	

The	exchanged	data	must	be	protected	against	disclosure	to	unauthorized	identities.	The	protection	
should	be	considered	on	the	level	of	connection	and/or	data.	

Considered	requirements:	

VICINITY-BR-SEC010,	VICINITY-BR-SEC020,	VICINITY-BR-SEC030,	ORI_008	

	

VICINITY-NFUNC-VAS050	 Value	added	service	should	support	privacy	preserving	of	processed	
data.	

The	following	privacy	preserving	features	should	be	considered:	

• authorized	access	to	private	data;	
• rectification	capability	for	private	data;	
• restriction	of	processing	of	private	data;	
• erasure	of	private	data;	

Considered	requirements:	

ORI_008	

	

	 D1.5	VICINITY	technical	requirements	specification	 67	

	 	

	
Public	

	

	

 Conclusion		
The	goal	of	the	VICINITY	Technical	requirements	specification	is	to	define	the	functional	design	of	the	
VICINITY	 solution	 including	 formalized	 functional	 requirements	 and	 non-functional	 requirements	
(quality	considerations).	

The	VICINITY	 functional	design	was	divided	 into	the	following	main	 functional	blocks	 (technical	use	
cases):	 Connecting	 to	 VICINITY,	 Discovery	 of	 new	 devices	 and	 value	 added	 service	 and	 VICINITY	
Interoperability	setup.	Each	functional	block	has	identified	actors	such	as:	

• System	integrator	(Connecting	IoT	infrastructure	into	VICINITY),		
• Service	provider	(Integrate	new	value	added	service	in	VICINITY),	
• Device	owner	(Provide	device	and	its	related	data	within	the	neighbourhood)	
• IoT	Operator	(Build	device	and	service	social	network	in	neighbourhood).	

These	main	technical	use	cases	have	been	described	 in	detail,	 focusing	on	their	principal	 functions.	
Functional	design	is	concluded	with	common	(supportive)	use	cases	in	terms	of	legislation,	security,	
privacy,	user	and	group	management.	

Complementary	to	functional	design,	quality	considerations	are	elaborated	in	following	fields:	

• security	transparently	protects	VICINITY	itself	and	exchanged	data,	including	role	based	access	
to	data,	data	integrity	and	end-to-end	security;	

• privacy	by	design	to	protect	privacy	when	exchanged	data	between	peers	utilizing	the	VICINITY	
concept;	

• user	experience	focuses	on	learnability,	efficiency	and	memorability	of	the	VICINITY	solution;	
• performance	 considers	 time	 and	 space	 characteristics	 of	 the	 VICINITY	 solution	 and	 its	

deployment	environment;	
• availability	 supports	 accessibility	 of	 the	 VICINITY	 solution	 services	 24x7	 with	 accessible	

downtimes	according	to	application	context;	
• maintainability	promotes	a	 flexible	and	extensible	VICINITY	 solution	able	 to	 react	 to	 future	

changes;	
• legal	 &	 standardization	 principles	 should	 be	 followed	 throughout	 detailed	 design	 and	

implementation	 of	 the	 VICINITY	 solution	 such	 as	 licensing,	 openness,	 reuse	 of	 industrial	
standards.	

The	technical	specification	is	concluded	with	high-level	requirements	for	the	value	added	service	to	
support	their	detail	design	and	implementation	in	WP	5	“Value	added	Services	Implementation”.	

VICINITY	Technical	requirements	specification	is	an	input	to	the	VICINITY	Architecture	design	(D1.6)	in	
for	identification	of:	

• system	components	based	on	the	functional	design,	
• high-level	information	model	(including	abstraction	of	physical	devices	and	services),	
• the	internal	and	external	interfaces	resulted	from	detailed	analysis	of	VICINITY	behaviour	and	
• selection	of	architecture	patterns	based	on	non-functional	requirements	in	security,	privacy,	

user	experience,	performance,	availability	and	maintainability	fields.	

	

	 D1.5	VICINITY	technical	requirements	specification	 68	

	 	

	
Public	

	

	

ANNEX	I	Example	of	Open	source	licenses	
This	annex	summarizes	and	elaborates11,12	the	most	used	open	source	licenses,	however	the	extended	
lists	of	licenses	are	publicly	available13.	The	following	aspects	have	been	elaborated	on	selected	license	
models:	

• Possibility	to	link	with	code	published	under	a	different	license;	
• Ability	to	release	changes	under	a	different	license;	
• Patent	grant	-	protection	of	licensees	from	patent	claims	made	by	code	contributors	regarding	

their	contribution,	and	protection	of	contributors	from	patent	claims	made	by	licensees;	
• TM	(Trademark	grant)	-	use	of	trademarks	associated	with	the	licensed	code	or	its	contributors	

by	a	licensee;	
• Private	use	-	whether	modification	to	the	code	must	be	shared	with	the	community	or	may	be	

used	privately	(e.g.	internal	use	by	a	corporation);	
• Possible	modification	of	the	code	by	a	licensee;	
• Releasing	changes	under	different	license.	

Table 5 List of Open source licenses

	 Apache	2.0	 Eclipse	 BSD	 MIT	 GNU	GPL	v3	

Linking	 with	 code	 with	
different	license	

Yes	 Limited,	see	14	 Yes	 Yes	 No	

Release	 changes	 under	
different	license	

Yes	 Limited,	see	1	 Yes	 Yes	 No	

Patent	grant	 Yes	 Yes	 Manually,	see	15	 Manually,	 see	
16	

Yes	

Private	use	 Yes	 Yes	 Yes	 Yes	 Yes	

Modification	 of	 the	 code	
by	a	licensee	

Yes	 Limited,	see	1	 Yes	 Yes	 Copylefted	

GPL	v3	compatibility	 Yes	 (only	 GPL	
v3!!!)	

No	 Yes	(modified	BSD)	

No	(original	BSD)	

Yes	 Yes	

TM	 No	 Manually	 Manually	 Manually	 Yes	

Release	 changes	 under	
different	license	

Yes	 Limited,	see	1	 Yes	 Yes	 No	

	

																																																													
11	https://opened.pressbooks.com/chapter/	open-software-licenses-high-level-comparison-of-open-licenses/	
12	http://forum.xprize.org/t/apache-public-license-vs-eclipse-public-license/1016/4	
13	https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses		
14	http://www.eclipse.org/legal/epl-v10.html		
15	https://opensource.org/licenses/BSD-3-Clause		
16	http://opensource.org/licenses/MIT		

