
	

	 VICINITY	Architectural	Design	 1	
	 	

	
Public	

	

	

	

	

	

Project	Acronym:	 VICINITY	

Project	Full	Title:	 Open	 virtual	 neighbourhood	 network	 to	 connect	 intelligent	
buildings	and	smart	objects	

Grant	Agreement:	 688467	

Project	Duration:	 48	months	(01/01/2016	-	31/12/2019)	

Deliverable	D1.6	

VICINITY	Architectural	Design		

Work	Package:	 WP1	 –	 VICINITY	 concept	 Requirements,	 Barriers,	 Specification	 and	
Architecture	

Task(s):	 T1.4	–	Functional	&	Technical	Specification,	Architectural	design	

Lead	Beneficiary:	 BVR	

Due	Date:	 31	March	2017	

Submission	Date:	 31	March	2017	

Deliverable	Status:	 Final	

Deliverable	Type:	 R	

Dissemination	Level:	 PU	

File	Name:	 VICINITY_D1_6_Architectural_Design_1.0.pdf	

	 	

	 	

	

	 VICINITY	Architectural	Design	 2	
	 	

	
Public	

	

	

VICINITY	Consortium		

No	 Beneficiary	 	 Country	

1. 	 TU	Kaiserslautern	(Coordinator)	 UNIKL	 Germany	

2. 	 ATOS	SPAIN	SA	 ATOS	 Spain	

3. 	 Centre	for	Research	and	Technology	Hellas	 CERTH	 Greece	

4. 	 Aalborg	University		 AAU	 Denmark	

5. 	 GORENJE	GOSPODINJSKI	APARATI	D.D.	 GRN	 Slovenia	

6. 	 Hellenic	Telecommunications	Organization	S.A.	 OTE	 Greece	

7. 	 bAvenir	s.r.o.	 BVR	 Slovakia	

8. 	 Climate	Associates	Ltd		 CAL	 United	Kingdom	

9. 	 InterSoft	A.S.		 IS	 Slovakia	

10. 	 Universidad	Politécnica	de	Madrid	 UPM	 Spain	

11. 	 Gnomon	Informatics	S.A.	 GNOMON	 Greece	

12. 	 Tiny	Mesh	AS		 TINYM	 Norway	

13. 	 HAFENSTROM	AS		 HITS	 Norway	

14. 	 Enercoutim	–	Associação	Empresarial	de	Energia	Solar	de	
Alcoutim		

ENERC	 Portugal	

15. 	 Municipality	of	Pylaia-Hortiatis		 MPH	 Greece	

	

Authors	List	

Leading	Author	(Editor)	

Surname	 First	Name	 Beneficiary	 Contact	email	

Oravec	 Viktor	 BVR	 viktor.oravec@bavenir.eu		

Co-authors	(in	alphabetic	order)	

No	 Surname	 First	Name	 Beneficiary	 Contact	email	

1. 	 Heinz	 Christopher	 UNIKL	 heinz@cs.uni-kl.de		

2. 	 Hovstø	 Asbjørn	 HITS	 hostvo@online.no	

3. 	 Kaggelides	 Kostis	 GNOMON	 k.kaggelides@gnomon.com.gr		

4. 	 Karkaletsis	 Kostas	 GNOMON	 k.karkaletsis@gnomon.com.gr		

	

	 VICINITY	Architectural	Design	 3	
	 	

	
Public	

	

	

5. 	 Karageorgopoulou	 Anastasia	 CERTH	 nkarageor@iti.gr		

6. 	 Kostelnik	 Peter	 IS	 peter.kostelnik@intersoft.sk	

7. 	 Margariti	 Katerina	 CERTH	 kmargariti@iti.gr		

8. 	 Moll	Nilsen	 Rolv	 TINYM	 rmn@serinustechnology.com		

9. 	 Mynzhasova	 Aida	 UNIKL	 infrared.ng@gmail.com	

10. 	 Poveda	 Maria	 UPM	 mpoveda@fi.upm.es	

11. 	 Serena	 Fernando	 UPM	 fserena@fi.upm.es	

12. 	 Sveen	 Flemming	 HITS	 flsveen@online.no		

13. 	 Tryferidis	 Athanasios	 CERTH	 thanasic@iti.gr	

14. 	 Zandes	 Dimitrios	 GNOMON	 d.zandes@gnomon.com.gr		

Reviewers	List	

List	of	Reviewers	(in	alphabetic	order)	

No	 Surname	 First	Name	 Beneficiary	 Contact	email	

1. 	 Dickerson	 Keith	 CAL	 keith.dickerson@mac.com		

2. 	 Koelsch	 Johannes	 UNIKL	 koelsch@cs.uni-kl.de		

3. 	 Raúl	 García-Castro	 UPM	 rgarcia@fi.upm.es	

4. 	 Tryferidis	 Athanasios	 CERTH	 thanasic@iti.gr	

5. 	 Vinkovic	 Saso	 GRN	 saso.vinkovic@gorenje.com		

	 	

	

	 VICINITY	Architectural	Design	 4	
	 	

	
Public	

	

	

Revision	Control	

Version	 Date	 Status	 Modifications	made	by	

0.1	 17.	June	2016	 Initial	Draft	 Oravec	(BVR)	

0.1.1	 1.	July	2016	 Update	based	on	GA	01	 Oravec	(BVR)	

0.1.2	 12.	October	2016	 Update	based	on	Pilot	site	visits	 Oravec	(BVR)	

0.1.3	 11.	 November	
2016	

Update	 based	 on	 preliminary	
VICINITY	Review	

Oravec	(BVR)	

0.1.4	 22.	December	 Update	based	on	D1.5	QaR	review	 Oravec	(BVR)	

0.1.5	 17.	February	2017	 Contributions	from	IS	 Kostelnik	(BVR)	

0.1.6	 23.	February	2017	 Contributions	from	UPM	 Serena	(BVR)	

0.1.7	 24.	February	2017	 Contributions	from	HITS	 Hovstø	(BVR)	

0.2	 5.March	2017	 Deliverable	 version	 uploaded	 for	
Quality	Check	

Oravec	(BVR)	

0.3	 30.	March	2017	 Quality	checked	final	version	 Oravec	(BVR)	

0.4	 31.	March	2017	 Final	Draft	reviewed	 Oravec	(BVR)	

1.0	 31.	March	2017	 Submission	to	the	EC	 Oravec	(BVR)	

	 	

	

	 VICINITY	Architectural	Design	 5	
	 	

	
Public	

	

	

Table	of	Contents	
Executive Summary ... 11

 Introduction ... 14
 Deliverable objectives .. 14
 Deliverable structure .. 14
 Relation to other Tasks and Deliverables .. 15

 Overall architecture design of VICINITY ... 16
 VICINITY architecture concept .. 16
 VICINITY Architecture use case scenarios .. 18

 Logical VICINITY architecture ... 22
 VICINITY Cloud ... 22
 VICINITY Node .. 23
 How interoperability works in VICINITY ... 23

 Information view ... 29
 VICINITY Cloud ... 30
 VICINITY Node .. 31
 Data storages .. 33

 Process view ... 39
 Interfaces View ... 55

 VICINITY Cloud ... 55
 Deployment view .. 59

 VICINITY deployment of VICINITY Cloud ... 59
 VICINITY deployment of VICINITY Node .. 60
 Components monitoring .. 61

 Detail architecture design of VICINITY components ... 62
 VICINITY Neighbourhood Manager ... 62
 VICINITY Communication Server and Node .. 64
 Semantic discovery & dynamic configuration agent platform (IS) 68
 VICINITY Gateway API ... 70
 VICINITY Agent / Adapter .. 75
 VICINITY Gateway API Services .. 77

 Quality considerations ... 80
 Usability .. 80
 Reliability .. 80
 Scalability & Performance ... 82

	

	 VICINITY	Architectural	Design	 6	
	 	

	
Public	

	

	

 Maintenance .. 82
 Security & Privacy .. 83

 Conclusions .. 92
Appendix A. Deployment of VICINITY Node on VICINITY Gateway ... 94
Appendix B. Reference architecture ... 95
Appendix C. Register ... 112

	

	 VICINITY	Architectural	Design	 7	
	 	

	
Public	

	

	

List	of	Tables	
Table	1	Information	flow	from	VICINITY	Neighbourhood	manager	..	30
Table	2	Information	flow	from	Semantic	discovery	and	agent	configuration	...	30
Table	3	Information	flow	from	VICINITY	Gateway	API	Services	..	31
Table	4	Information	flow	from	VICINITY	Communication	Server	..	31
Table	5	Information	flow	from	VICINITY	Communication	Node	...	31
Table	6	Information	flow	from	VICINITY	Gateway	API	..	32
Table	7	Information	flow	from	VICINITY	Agent/	Adapter	...	32
Table	8	Mapping	of	VICINITY	Functionalities	to	VICINITY	Architecture	processes	..	53
Table	9	Interfaces	provided	by	VICINITY	Neighbourhood	manager	..	55
Table	10	Interfaces	provided	by	Semantic	discovery	and	dynamic	configuration	agent	platform	56
Table	11	Interfaces	provided	by	VICINITY	Gateway	API	Services	..	56
Table	12	Interface	provided	by	VICINITY	Communication	Server	...	56
Table	13	Interface	provided	by	VICINITY	Communication	Node	...	57
Table	14	Interface	provided	by	VICINITY	Gateway	API	...	57
Table	15	Interface	provided	by	VICINITY	Agent/	Adapter	...	58
Table	16	VICINITY	Security	features	mapped	to	AIOTI	recommendations	...	84
Table	17		VICINITY	Privacy	features	mapped	to	AIOTI	recommendations	..	86
	

List	of	Figures	
Figure	1	High-level	logical	VICINITY	architecture	..	11
Figure	2	VICINITY	Concept	...	16
Figure	3	High-level	logical	VICINITY	architecture	..	17
Figure	4	Local	application	accessing	IoT	objects	connected	to	smart	hub	of	different	Vendor	19
Figure	 5	 Local	 application	 accessing	 IoT	 objects	 connected	 to	 smart	 hub	 of	 different	 Vendor	 through	 Cloud	
services	..	20
Figure	6	Remote	application	provided	by	 value-added	 service	 accessing	 IoT	objects	 connected	 to	 smart	HUB	
and/or	cloud	service	..	21
Figure	7	Semantic	interoperability	approach	for	Discovery	..	25
Figure	8	Semantic	interoperability	approach	for	Accessing	..	27
Figure	9	VICINITY	Architecture	information	flow	..	29
Figure	10	VICINITY	Data	storages	..	33
Figure	11	VICINITY	ontology	network	design	..	38
Figure	12	Manual	VICINITY	Node	registration	process	...	41
Figure	13	Manual	VICINITY	Node	removal	..	41
Figure	14	Auto-configuration	of	VICINITY	Node	..	42
Figure	15	VICINITY	Node	configuration	distribution	process	..	43

	

	 VICINITY	Architectural	Design	 8	
	 	

	
Public	

	

	

Figure	16	Semantic	search	of	IoT	objects	from	VICINITY	Neighbourhood	Manager	...	45
Figure	17	Semantic	search	of	IoT	objects	from	VICINITY	Gateway	API	...	45
Figure	18	Manual	change	of	IoT	object	...	46
Figure	19	Automatic	registration	of	IoT	object	in	VICINITY	...	46
Figure	20	Crawling	external	repositories	process	...	47
Figure	21	“Getting”	property	of	consumed	IoT	object	..	48
Figure	22	“Setting”	property	of	consumed	IoT	object	..	49
Figure	23	Calling	action	of	consumed	IoT	object	..	49
Figure	24	Receiving	event	from	consumed	IoT	object	..	50
Figure	25	“Getting”	property	of	exposed	IoT	object	...	51
Figure	26	"Setting"	property	of	exposed	IoT	object	..	52
Figure	27	Receiving	action	of	exposed	IoT	object	...	52
Figure	28	Emitting	event	of	exposed	IoT	object	..	53
Figure	29	VICINITY	Interface	view	...	55
Figure	30	VICINITY	Cloud	deployment	strategy	..	59
Figure	31	VICINITY	Node	deployment	strategy	...	60
Figure	32	Component	diagram	of	VICINITY	Neighbourhood	Manager	...	62
Figure	33	Functional	blocks	of	VICINITY	Communication	Server	and	Node	..	65
Figure	34	Security	context	of	VICINITY	..	83
Figure	35	Security	architecture	...	84
Figure	36	Deployment-Scenario	of	a	VICINITY	Node	on	VICINITY	Gateway	..	94
Figure	37	IoT	Reference	architecture	in	relation	to	VICINITY	Architecture	...	95
Figure	38	Context	of	IoT	architectures	..	96
Figure	39	Conceptual	model	of	IoT	reference	architecture	..	96
Figure	40	Relation	between	overall	model	and	architecture	concepts	..	96
Figure	41	IoT	architecture	reference	model	of	Architecture	views	..	97

	 	

	

	 VICINITY	Architectural	Design	 9	
	 	

	
Public	

	

	

List	of	Definitions	&	Abbreviations	

Abbreviation	 Definition	

5Vs	 Volume,	Velocity,	Veracity,	Variability,	and	Variety		

6LoWPAN	 IPv6	over	Low	Power	Wireless	Personal	Area	Network		

API	 Application	Programming	Interface	

CM	 Conceptual	Model	

CoAP	 Constrained	Application	Protocol	

CPU	 Central	processing	unit	

DEVOPS	 software	DEVelopment	and	information	technology	OPerationS	

EC	 European	Commission	

EU	 European	Union	

GDPR	 General	Data	Protection	Regulation	

HDD	 Hard	disk	drive	

ICU	 International	Components	for	Unicode	

IG	 Interest	Group	

IoT	 Internet	of	Things	

IoT	RA	 Internet	of	Things	Reference	Architecture	

JMX	 Java	Management	Extensions	

MQTT	 Message	Queue	Telemetry	Transport	

OWL	 W3C	Web	Ontology	Language	

PII	 Personally	Identifiable	Information	

P2P	 Peer	to	Peer	

RA	 Reference	Architecture	

RAID	 Redundant	Array	of	Independent	Disks	

RAM	 Random	Access	Memory	

RDF	 Resource	Description	Framework	

REST	 Representational	state	transfer	

RM	 Reference	Model	

SNMP	 Simple	Network	Management	Protocol	

SPARQL	 SPARQL	Protocol	and	RDF	Query	Language	

TD	 Thing	Description	

TED	 Thing	Ecosystem	Description	

UML	 Universal	Modelling	Language	

	

	 VICINITY	Architectural	Design	 10	

	 	

	
Public	

	

	

Abbreviation	 Definition	

VTED	 Virtual	TED	

XMPP	 Extensible	Messaging	and	Presence	Protocol	

WoT	 Web	of	Things	

	

	 	

	

	 VICINITY	Architectural	Design	 11	

	 	

	
Public	

	

	

Executive	Summary	
	

This	 document,	 referred	 as	 “D1.6	 VICINITY	 Architectural	 design”,	 is	 a	 deliverable	 of	 the	 VICINITY	
project,	 funded	by	the	European	Commission	(EC)	Directorate-General	 for	Research	and	Innovation	
(DG	RTD),	under	its	Horizon	2020	Research	and	Innovation	Programme	(H2020).	VICINITY	is	building	
a	device	and	standard	independent	platform	for	IoT	infrastructures	that	offers	„Interoperability	as	a	
Service“.	 They	 aim	 of	 the	 VICINITY	 is	 to	 solve	 the	 interoperability	 problem	 with	 a	 virtual	
neighbourhood	concept	which	is	a	decentralized,	user-centric	approach	that	allows transparency	and	
full	control	over	exchanged	data.
This	deliverable	directly	addresses	the	Objective	2.4	“VICINITY	Technical	 requirements	and	solution	
architecture	 specified“,	 in	 terms	 of	 describing	 architectural	 decisions	 which	 shape	 the	 VICINITY	
interoperability	 platform.	 The	 selected	 architectural	 options	 and	decisions	 are	based	on	 functional	
and	 quality	 requirements	 extracted	 from	 D1.5	 VICINITY	 Technical	 requirement	 specification	
document	and	can	be	summarized	in	the	following	Figure	1.	

	

Figure 1 High-level logical VICINITY architecture
The	VICINITY	architecture	is	divided	into	the	following	principal	components:	

• VICINITY	Cloud	providing	set	of	services	to	setup	peer-to-peer	 interoperability	between	 IoT	
environments	(further	referred	as	virtual	neighbourhoods),	that	are	including:	

o access	control	to	the	VICINITY-connected	IoT	objects,		
o services	for	device	discovery	and	registration,		
o deployment	 of	 value	 added	 services	 over	 VICINITY-connected	 IoT	 objects	 and	

environments,	
o and	setting	up	connection	to	VICINITY	(e.g.	getting	integrated	to	VICINITY);	

• VICINITY	 Node,	 integrating	 IoT	 infrastructures	 and	 value-added	 services	 to	 the	 VICINITY	
interoperability	network.	The	VICINITY	Node	includes:	

	

	 VICINITY	Architectural	Design	 12	

	 	

	
Public	

	

	

o VICINITY	Communication	Node	which	handles	the	secure	and	peer-to-peer	exchange	
of	IoT	data	(IoT	events,	actions	as	well	as	IoT	properties)	and	configuration	data	with	
other	integrated	infrastructures,	value	added	services	and	the	VICINITY	Cloud;	

o VICINITY	 Gateway	 API	 providing	 semantic	 interoperability	 interface	 for	 VICINITY	
Adapters/	Agents	to	register	IoT	objects,	to	access	shared	IoT	objects	or	to	discover	
and	query	IoT	objects;	

o VICINITY	Adapters	and	Agents	adapting	VICINITY	into	local	infrastructures.	

The	 VICINITY	 Cloud	 and	 set	 of	 VICINITY	 Nodes	 are	 creating	 secure	 peer-to-peer	 communication	
network.	 This	 network	 of	 loosely	 coupled	 peers	 copying	 geographically	 distribution	 of	 integrated	
infrastructures	 and	 value-added	 service	 thus	 user	 data	 exchange	 load	 is	 distributed	 accordingly.	
Moreover,	 any	 performance,	 availability	 and	 system	 failure	 issues	 originated	 in	 integrated	
infrastructures	and	value-added	services	or	even	in	VICINITY	Cloud	can	be	localised	in	the	peer	(i.e.	
spread	of	issues	can	be	kept	under	control	in	the	certain	part	of	the	peer-to-peer	network).	

The	VICINITY	Cloud	components	such	as	VICINITY	Neighbourhood	manager	(providing	user	interface	
to	 VICINITY	 Users),	 Semantic	 discovery	 and	 dynamic	 configuration	 agent	 platform	 (providing	
semantic	 platform)	 and	 VICINITY	 Communication	 Server	 (providing	 control	 of	 communication	
between	integrated	infrastructures)	shall	be	deployed	as	high	available	software	components	being	
to	 scale	 in/out	 VICINITY	 cloud	 to	 current	 needs	 to	 the	 integrated	 infrastructures	 and	 value	 added	
services.	

The	 distributed	 infrastructure	 of	 VICINITY	 is	 enhanced	 by	 interoperability	 approach	 to	 provide	 a	
standard	way	to	both	Discover	and	Access	heterogeneous	 IoT	objects	distributed	among	sparse	 IoT	
infrastructures	 based	 on	 the	work	 being	 done	 by	 the	W3C	Web	 of	 Things	 (WoT)	WG1.	 Therefore,	
VICINITY	shall	rely	on	Thing	description	(TD)	introduced	by	WoT	to	describe	every	IoT	object	(which	
can	 represent	 either	 physical	 or	 abstract	 Things)	 that	 belong	 to	 any	 integrated	 IoT	 infrastructure,	
which	 in	 turn	 shall	 be	 described	 as	 an	 ecosystem	 of	 IoT	 objects	 (Things	 ecosystem	 descriptions	 –	
TEDs).	Accordingly,	each	interested	part	in	taking	advantage	of	the	semantic	interoperability	solution	
provided	by	VICINITY	must	only	be	able	to	understand	such	description	frames	as	well	as	the	Web	of	
Things	ontology	through	the	VICINITY	Gateway	API	interface.	

The	VICINITY	trust,	privacy	and	security	features	are	mainly	covered:	

• Verification	of	VICINITY	users	through	VICINITY	Neighbourhood	Manager	and	verification	and	
validation	 of	 IoT	 objects	 (value-added	 services	 and	 devices)	 through	 the	 VICINITY	
communication	server	security	services;	

• End-to-end	security	and	authenticity	of	exchanged	data	through	peer-to-peer	network	using	
encryption	 and	 data	 integrity	 services	 of	 VICINITY	 communication	 Server	 and	 Node	
components;	

• Controlled	registration	and	access	to	value-added	services	and	IoT	objects	properties,	action	
and	 events	 based	 on	 sharing	 access	 rules	 with	 private	 data	 processing	 consents2	through	
VICINITY	Neighbourhood	manager	set	by	device	owner	or	service	provided;	

																																																													
1	https://www.w3.org/WoT/IG/	
2	Regulation	(EU)	2016/679	of	the	European	Parliament	and	of	the	Council	of	27	April	2016	on	the	protection	of	
natural	persons	with	regard	to	the	processing	of	personal	data	and	on	the	free	movement	of	such	data,	and	
repealing	Directive	95/46/EC	(General	Data	Protection	Regulation)	

	

	 VICINITY	Architectural	Design	 13	

	 	

	
Public	

	

	

• Exchanging	 of	 private	 user	 data	 only	 through	 VICINITY	 Nodes	 and	 Peer-to-peer	 network	
without	storing	data	in	VICINITY	Cloud3;	

	
The	 VICINITY	 Architectural	 design	 together	 with	 VICINITY	 Technical	 requirements	 specification	
defines	 the	 base	 line	 for	 the	 following	 implementation	 of	 VICINITY	 core	 components,	 Semantic	
Discovery	and	Dynamic	Configuration	services	in	WP3	and	VICINITY	Gateway	Adapters	and	VICINITY	
Agent	and	Auto-Discovery	platform	in	WP4.	

																																																													
3	VICINITY	 Cloud	 stores	 only	 meta-data	 necessary	 to	 manage	 access	 to	 devices,	 value-added	 services	 and	
facilitate	 exchanged	 information.	 Meta-data	 stored	 in	 VICINITY	 Cloud	 can	 be	 accessed	 by	 VICINITY	
Neighborhood	manager	user	interface	by	appropriate	users.	

	

	 VICINITY	Architectural	Design	 14	

	 	

	
Public	

	

	

 Introduction	
This	 document	 provides	 the	 architectural	 design	 as	 developed	 within	 “Task	 1.4	 –	 Functional	 &	
Technical	Specification,	Architectural	design”.	

The	relevant	tasks	(from	which	architecture	design	is	derived)	are	as	follows:	

• Task	1.1	–	Elicitation	of	user	requirements	and	barriers	related	to	IoT	interoperability;	
• Task	1.2	–	Pilot	Sites	Surveys	and	extraction	of	Use	Case	requirements;	
• Task	1.3	–	VICINITY	Platform	User	and	Business	Requirement	Definition;	
• Task	2.1	–	Analysis	of	available	platforms,	IoT	infrastructures,	IoT	ontologies	and	standards.	

Thus,	 it	 is	 suggested	 that	 readers	 should	 be	 familiar	 with	 and	 have	 access	 to	 the	 following	
deliverables:	

• D1.1	VICINITY	requirement	capture	framework;	
• D1.2	Report	on	business	drivers	and	barriers	of	IoT	interoperability	and	value	added	services;	
• D1.3	Report	on	pilot	sites	and	operational	requirements;	
• D1.4	Report	on	VICINITY	business	requirements;	
• D1.6	Technical	requirements	specification;	
• D2.1	Analysis	of	Standardisation	Context	and	Recommendations	for	Standards	Involvement.	

This	 document	 is	 prepared	 as	 a	 starting	 point	 for	 technical	 audience	 to	 understand	 the	 overall	
architecture	design	and	decision	of	 the	VICINITY	solution.	However,	 the	document	will	not	provide	
comprehensive	 and	 detailed	 documentation	 with	 all	 the	 technical	 information.	 It	 should	 help	
technical	partners	within	consortium	during	the	development	of	the	VICINITY	solution.	Consequently,	
the	most	important	source	of	information	will	be	the	actual	source	code	and	its	documentation	(e.g.	
user	manuals,	installation	guides	and	source	code	comments).	

The	system	will	be	developed	through	repeated	cycles	(iterative)	and	in	smaller	portions	at	a	time	
(incremental),	what	means	that	each	iteration	will	contain	part	of	the	analysis,	implementation	and	
testing.	This	technical	documentation	will	be	also	continuously	updated	throughout	the	project.	

 Deliverable	objectives	
The	objectives	of	this	deliverable	are	as	follows:	

• to	define	VICINITY	architecture	design	of	core	VICINITY	components	and	concepts;	
• to	define	implementation	of	usability,	reliability,	efficiency,	maintenance.	

 Deliverable	structure	
The	deliverable	is	divided	into	the	following	sections:	

• Section	1	includes	executive	summary	of	this	deliverable;	
• Section	2	provides	to	deliverable	(this	section);	
• Section	3	coins	an	overall	VICINITY	Architecture	and	principal	use-cases	of	the	architecture;	
• Section	4	presents	a	logical	view	of	the	VICINITY	interoperability	platform;	
• Section	5	defines	the	information	flow	and	important	VICINITY	data	storages;	
• Section	6	encompasses	cross	components’	processes	in	VICINITY;	
• Section	7	summarizes	the	interfaces	between	VICINITY	components;	
• Section	 8	 presents	 the	 conceptual	 deployment	 scenarios	 of	 VICINITY	 Cloud	 and	 VICINITY	

Node;	

	

	 VICINITY	Architectural	Design	 15	

	 	

	
Public	

	

	

• Section	9	proposes	important	concepts	of	each	VICINITY	Architectural	component;	
• Section	10	provides	Security	features	of	VICINITY;	
• Section	11:	Conclusions;	
• Appendix	A:	Deployment	of	VICINITY	Node	on	VICINITY	Gateway;	
• Appendix	B:	Internet	of	Things	Reference	Architecture	(IoT	RA);	
• Appendix	C:	Register	of	important	terms.	

 Relation	to	other	Tasks	and	Deliverables	
The	following	documents	have	been	used	to	derive	detail	design:	

• D1.1	VICINITY	requirement	capture	framework	–	defines	how	the	requirements	are	managed	
in	VICINITY	project;	

• D1.2	Report	on	business	drivers	and	barriers	of	IoT	interoperability	and	value	added	services	
–	defines	constraints	for	functional	specification	based	on	stakeholders’	drivers	and	barriers;	

• D1.3	 Report	 on	 pilot	 sites	 and	 operational	 requirements	 –	 defines	 constraints	 deployment	
and	environment	constraints	for	functional	specification;	

• D1.4	 Report	 on	 VICINITY	 business	 requirements	 –	 provides	 inputs	 on	 desired	 VICINITY	
functionality;	

• D1.5	VICINITY	 technical	 requirements	 specification	 –	 provides	 non-functional	 requirements	
to	shape	the	architecture	design.	

The	following	tasks	utilize	the	architecture	design	reported	in	this	document:	

• Task	3.1,	Task	3.2	and	Task	3.3	to	detail	design	and	implement	of	VICINITY	core	components,	
Semantic	Discovery	and	Dynamic	Configuration	services;	

• Task	 4.1,	 Task	 4.2	 and	 Task	 4.3	 to	 detail	 design	 and	 to	 implement	 of	 VICINITY	 Client	
components	and	security	services.	

	

	

	 VICINITY	Architectural	Design	 16	

	 	

	
Public	

	

	

 	Overall	architecture	design	of	VICINITY	
The	VICINITY	 is	 built	 around	 the	 concept	 of	 connecting	 different	 IoT	 ecosystems	 through	VICINITY	
(interoperability	 as	 a	 services)	 which	 enable	 to	 interact	 with	 IoT	 objects	 from	 other	 different	
ecosystems	 as	 if	 they	were	 their	 own.	 The	 interoperability	 services	 create	 an	 environment	where	
value-added	 services	 can	 be	 deployed	 and	 processes	 cross-domain	 exchanged	 information	 across	
different	domains	(Figure	2).	

	

Figure 2 VICINITY Concept
In	 presented	 figure	 two	 separate	 ecosystems	 are	 presented	 intelligent	 building	 and	 energy	
ecosystem.	Each	of	these	ecosystems	are	integrated	to	VICINITY	by	its	VICINITY	Adapter	through	the	
VICINITY	gateway.	Based	on	the	setup	of	virtual	neighbourhood	in	VICINITY	Neighbourhood	manager,	
VICINITY	Adapters	may	access	remote	IoT	objects,	for	example	a	battery	in	an	Energy	ecosystem,	and	
simulate	it	as	a	part	of	their	ecosystem.	Moreover,	IoT	objects	shared	by	VICINITY	Adapter	within	a	
virtual	 neighbourhood	may	 be	 accessed	 by	 value-added	 services	 to	 provide	 cross-domain	 services	
using	common	a	VICINITY	ontology.	

 VICINITY	architecture	concept	
The	 objective	 of	 VICINITY	 architecture	 is	 to	 build-up	 a	 decentralised	 interoperability	 between	
integrated	 IoT	 infrastructures	 and	 value-added	 services	 (called	 virtual	 neighbourhood)	 through	 a	
peer-to-peer	 (P2P)	 network	 of	 VICINITY	 Nodes.	 VICINITY	 Nodes	 integrates	 infrastructures	 in	 to	
VICINITY.	 The	 infrastructures’	 managers	 can	 setup	 the	 sharing	 access	 of	 their	 IoT	 objects	 without	
losing	the	control	over	them	using	VICINITY	Cloud.	

The	VICINITY	Nodes	create	a	closed	and	secure	VICINITY	P2P	Network	for	the	exchange	of	user	data.	
The	VICINITY	P2P	Network	 is	 configured	via	 the	VICINITY	Cloud,	based	on	a	 virtual	neighbourhood	
configuration	data	–	sharing	access	rules	of	IoT	objects	within	the	VICINITY	with	security	properties	
(such	as	encryption,	data	integrity,	etc.)	to	ensure	security	and	privacy	of	exchanged	use	data.	

The	 VICINITY	 Nodes	 are	 configured	 based	 on	 a	 semantic	 &	 dynamic	 configuration	 data	 (semantic	
descriptions	 of	 IoT	 objects)	 from	 the	 VICINITY	 Cloud	 to	 ensure	 semantic	 interoperability	 between	
integrated	infrastructures	and	value	added	services.	

	

	

	 VICINITY	Architectural	Design	 17	

	 	

	
Public	

	

	

	
Figure 3 High-level logical VICINITY architecture

On	 the	 top	 of	 the	 VICINITY	 Cloud	 and	 VICINITY	 Nodes	 the	 following	 VICINITY	 functionality	 are	
executed	(see	D1.5	for	detailed	description):	

• Interoperability	setup;	
• Device	register	and	discovery;	
• Deploy	value	added	service;	
• Connecting	VICINITY.	

 VICINITY	Cloud	

The	VICINITY	Cloud	provides	the	set	of	the	following	services	to	support	VICINITY	functionality:	

• Configure	 a	 virtual	 neighbourhood	 of	 integrated	 infrastructures	 and	 value-added	 services	
including	the	setup	of	sharing	access	rules	of	any	 IoT	object	visible	 in	VICINITY	through	the	
user-friendly	interface	(9.1);	

• Semantic	search	of	IoT	objects	in	VICINITY	virtual	neighbourhood;	
• Semantic	mapping	and	normalization	of	new	IoT	objects	to	VICINITY	IoT	ontology;	
• Configuration	of	VICINITY	Nodes	based	on:	

o IoT	object	description	(such	as	data-integration	and	privacy	services),	
o sharing	access	rules	(configuring	of	access	to	IoT	objects	in	P2P	network)	and		
o configuration	 of	 the	 communication	 with	 integrated	 infrastructure	 or	 value-added	

services	(such	as	encryption	and	data	integrity	features);	
• Auditing	and	user	notification	services	of	changes	and	events	in	virtual	neighbourhood	(such	

as	 new	 integrated	 infrastructure	 request,	 change	 of	 sharing	 access	 rules,	 new	 device	 or	
service	in	virtual	neighbourhood	events).	

 VICINITY	Node	

A	VICINITY	Node	 is	 the	 set	of	 software	 components	providing	 the	 following	 set	of	 services	 for	 the	
integration	of	the	IoT	infrastructure	and/or	value-added	service	into	VICINITY:	

	

	 VICINITY	Architectural	Design	 18	

	 	

	
Public	

	

	

• Remote	 IoT	object	 semantic	discovery	 service	 to	 look-up	 for	 the	objects	provided	by	other	
integrated	infrastructures	and/or	value-added	services	integrated	with	VICINITY;	

• User	data	annotation	following	a	semantic	format	derived	from	the	VICINITY	IoT	ontology.	
• User	data	forwarding	within	the	P2P	network	according	the	share	access	rules	defined	in	the	

VICINITY	Cloud;	
• Encryption	 and	 data-integration	 services	 for	 forwarded	 user	 data	 to	 ensure	 secure	

transmission	of	the	data	within	VICINITY	P2P	network	(9.5);	
• Configurable	of	auditing	and	logging	of	exchanged	user	data.	

 VICINITY	P2P	network	

The	 VICINITY	 P2P	 network	 represents	 the	 distributed	 application	 architecture	 composed	 of	 all	
VICINITY	Nodes	that	are	registered	in	VICINITY.	The	connections	between	such	nodes	are	established	
on-demand	 and	 facilitated	 by	 the	 VICINITY	 Cloud.	 That	 is,	 whenever	 a	 Node	 requires	 information	
from	the	Network,	VICINITY	Cloud	informs	about	the	candidate	peers	(Nodes)	that	may	be	relevant	
to	 establish	 connection	 with,	 in	 the	 context	 of	 specific	 information	 requests.	 The	 VICINITY	 P2P	
network	 provides	 scalable	 (9.3),	 closed	 and	 secure	 common	 communication	 network	 for	 VICINITY	
Nodes	and	VICINITY	Cloud	(i.e.	node-to-node	and	cloud-to-node	communication)	to	exchange:	

• User	data	between	VICINITY	Nodes	based	on	the	share	access	rules	defined	in	VICINITY	Cloud	
services;	

• Control	 and	 configuration	 (such	 as	 encryption	 and	 privacy	 features	 mechanism,	 control	
communication	 channels	 within	 P2P	 network,	 configure	 communication	 between	 VICINITY	
Nodes	 and	 integration	 infrastructures)	 messages	 between	 VICINITY	 Nodes	 and	 VICINITY	
Cloud.	

 VICINITY	Architecture	use	case	scenarios	
This	section	describes	the	different	architectural	scenarios	on	how	VICINITY	supports	interoperability	
between	different	IoT	infrastructures	and	value-added	services.	

 Local	application	accessing	IoT	objects	connected	to	smart	hub	of	different	IoT	
infrastructure	

This	 architecture	 use	 case	 scenario	 interconnects	 two	 IoT	 infrastructures	 through	 VICINITY	 using	
VICINITY	 Nodes.	 Both	 infrastructures	 are	 integrated	 to	 the	 VICINITY	 through	 respective	 VICINITY	
Nodes.	 Regardless	 of	 the	 location	of	 integrated	 IoT	 infrastructures	 (i.e.	 same	or	 different	 building,	
same	communication	network),	they	are	communicating	through	the	VICINITY	P2P	network.	VICINITY	
Node	communicates	with	Smart	 infrastructures	with	SmartHUB	 (such	open-M2M	platforms)	or	 IoT	
devices	(depending	on	implementation).	

Goal	of	use	case:	Application	running	in	Smart	Infrastructure	A	can	access	IoT	objects	connected	to	
Smart	infrastructure	B	as	part	of	its	own	infrastructure.	

	

	 VICINITY	Architectural	Design	 19	

	 	

	
Public	

	

	

	
Figure 4 Local application accessing IoT objects connected to smart hub of different Vendor

Discovery:	 Browser	 application	 discovers	 IoT	 objects	 connected	 to	 Smart	 Infrastructure	 A	 locally.	
Browser	application	discovers	IoT	objects	connected	to	Smart	Infrastructure	B	locally	(using	VICINITY	
discovery	semantic	services	provided	by	VICINITY	Node).	

Data	 access:	 Browser	 application	 accesses	 data	 streams	 from	 IoT	 objects	 connected	 to	 Smart	
Infrastructure	A	locally	(without	VICINITY	Node).	Browser	application	accesses	data	streams	from	IoT	
objects	connected	to	Smart	Infrastructure	B	locally	(using	VICINITY	Node	and	VICINITY	P2P	network).	

 Local	application	accessing	IoT	objects	connected	to	smart	hub	of	different	IoT	
infrastructure	through	Cloud	services	

This	 architecture	 use	 case	 scenario	 interconnects	 two	 IoT	 infrastructures	 through	 VICINITY	 using	
VICINITY	Nodes.	One	of	the	infrastructures	is	integrated	on	level	of	Smart	HUB,	other	is	integrated	on	
the	 level	 of	 cloud	 services4.	 Regardless	 of	 location	 of	 integrated	 IoT	 infrastructures	 (like	 same	 or	
different	 building,	 same	 communication	 network)	 they	 are	 communicating	 through	 VICINITY	 P2P	
network.	

Goal	of	use	case:	Application	running	in	Smart	Infrastructure	A	can	access	IoT	objects	connected	to	
Smart	Infrastructure	B	through	its	cloud	services	as	part	of	its	own	infrastructure.	

																																																													
4	Cloud	services	can	be	deployed	as	public,	private	or	hybrid	cloud	services.	

	

	 VICINITY	Architectural	Design	 20	

	 	

	
Public	

	

	

	

Figure 5 Local application accessing IoT objects connected to smart hub of different Vendor through
Cloud services

Discovery:	 Browser	 application	 discovers	 IoT	 objects	 connected	 to	 Smart	 Infrastructure	 A	 locally	
(using	 infrastructure	 A	 discovery	 services).	 Browser	 application	 discovers	 IoT	 objects	 connected	 to	
Smart	Infrastructure	B	locally	(using	VICINITY	discovery	semantic	services	provided	by	VICINITY	Node,	
VICINITY	Node	discovers	IoT	objects	using	cloud	services	only).	

Data	 access:	 Browser	 application	 accesses	 data	 streams	 from	 IoT	 objects	 connected	 to	 Smart	
Infrastructure	A	locally	(without	VICINITY	Node),	Browser	application	accesses	data	streams	from	IoT	
objects	 connected	 to	 Smart	 Infrastructure	 B	 remotely	 (using	 VICINITY	 Node	 and	 VICINITY	 P2P	
network,	VICINITY	Node	of	Smart	Infrastructure	B	access	data	using	cloud	services	only).	

 Remote	 application	 provided	 by	 value-added	 service	 accessing	 IoT	 objects	
connected	to	Smart	HUB	and/or	cloud	service	

This	 architecture	 use	 case	 scenario	 interconnects	 two	 IoT	 infrastructures	 and	 Value-added	 service	
through	VICINITY	using	VICINITY	Nodes.	IoT	infrastructures	are	integrated	on	level	of	the	Smart	HUB	
and	the	Cloud	service.	

Goal	 of	 use	 case:	 Browser	 application	 running	on	 value-added	 service	needs	 access	 to	 IoT	objects	
connected	Smart	Infrastructure	A	and	Smart	Infrastructure	B.	

	

	 VICINITY	Architectural	Design	 21	

	 	

	
Public	

	

	

	

Figure 6 Remote application provided by value-added service accessing IoT objects connected to smart
HUB and/or cloud service

Discovery:	 Browser	 application	 discovers	 IoT	 objects	 connected	 to	 Smart	 Infrastructure	 A	 and	 B	
remotely	 (using	 VICINITY	 Node).	 Applications	 running	 in	 Smart	 Infrastructure	 A	 or	 B	 discover	 only	
their	IoT	objects.	

Data	 access:	 Browser	 application	 accesses	 data	 streams	 from	 IoT	 objects	 connected	 to	 Smart	
Infrastructure	A	and	B	remotely	(using	VICINITY	Node	and	underlying	VICINITY	P2P	network).	

	

	 VICINITY	Architectural	Design	 22	

	 	

	
Public	

	

	

 Logical	VICINITY	architecture	
Based	 on	 VICINITY	 architecture	 concept	 and	 VICINITY	 Functionality	 (see	 Deliverable	 D1.5)	 logical	
VICINITY	architecture	is	decomposed	into	following	components:	

• VICINITY	Cloud:	
o VICINITY	Neighbourhood	Manager;	
o Semantic	discovery	and	agent	configuration	platform;	
o VICINITY	Communication	Server;	
o VICINITY	Gateway	API	Services;	

• VICINITY	Node:	
o VICINITY	Communication	Node;	
o VICINITY	Gateway	API;	
o VICINITY	Agent/	Adapter.	

 VICINITY	Cloud	

 VICINITY	Neighbourhood	Manager	

The	VICINITY	Neighbourhood	manager	shall	provide	following	service:	

• Virtual	neighbourhood	search	for	IoT	objects,	users,	organizations;	
• IoT	objects	management;	
• Sharing	access	rules	management;	
• VICINITY	Node	configuration	management;	
• Consent	and	terms	of	condition	management;	
• User	and	organization	management;	
• User	important	notification	services;	
• User	activity	auditing.	

 Semantic	discovery	and	agent	configuration	

The	Semantic	discovery	and	agent	configuration	platform	shall	provide:	

• Semantic	search	services;	
• IoT	objects	semantic	normalization	to	VICINITY	IoT	ontology;	
• IoT	objects	registry	services;	
• External	IoT	object	template	repository	crawling	and	downloading;	
• Semantic	mapping	of	IoT	objects	templates	to	VICINITY	IoT	ontology;	
• Semantic	data	changes	provision;	
• VICINITY	Agent	configuration	provision.	

 VICINITY	Gateway	API	Services	

The	VICINITY	Gateway	API	Services	shall	provide	supporting	services	for	VICINITY	Gateway	API:	

• Semantic	search	of	IoT	objects	in	VICINITY	neighbourhood	services.	

 VICINITY	Communication	Server	

The	VICINITY	Communication	server	shall	provide	following:	

• communication	channel	setup;	

	

	 VICINITY	Architectural	Design	 23	

	 	

	
Public	

	

	

• transaction	services	between	VICINITY	Cloud	components;	
• security	services	for	IoT	device	authentication		
• VICINITY	Cloud	services	forwarding	to/from	VICINITY	P2P	network:	

o IoT	Objects	descriptions;	
o VICINITY	Node	(auto-)	configuration	messages.	

 VICINITY	Node	

 VICINITY	Communication	Node	

The	VICINITY	Communication	Node	shall	provide	the	following	functionality:	

• data	forwarding	in	VICINITY	P2P	network;	
• data	access	authorization	services;	
• data	integrity	and	encryption	services;	
• privacy	filtering	services	(see	8.2.2);		
• VICINITY	Configuration	service	(forwarded	from	VICINITY	Cloud);	
• IoT	objects	registry	service	(forwarded	from	VICINITY	Cloud).	

 VICINITY	Gateway	API	

The	VICINITY	Gateway	API	shall	provide	the	following	functionality:	

• Consume	 Things	 API	 service	 (i.e.	 to	 access	 properties,	 actions	 and	 events	 of	 IoT	 objects	
through	VICINITY);	

• Expose	Things	API	service	(to	expose	things	from	integrated	infrastructure	into	VICINITY);	
• Gateway	API	configuration	service	to	configure	consume	and	expose	things	APIs;	
• IoT	objects	registry	service	(from	VICINITY	Adapter/	Agent).	

 VICINITY	Agent/	Adapter	

The	VICINITY	Agent/	Adapter	shall	provide	the	following	functionality:	

• Integration	 of	 IoT	 Infrastructure	 or	 value-added	 service	 into	 VICINITY	 through	 VICINITY	
Gateway	API	by	exposing	local	IoT	objects	into	VICINITY	and	simulate	supported	type	of	IoT	
objects	from	neighbourhood	in	integrated	infrastructure;	

• VICINITY	Agent/	Adapter	configuration	service;	
• Semantic	matching	between	parametrized	demands	and	available	IoT	node	descriptors.	

 How	interoperability	works	in	VICINITY	
The	 VICINITY	 architecture	 follows	 an	 interoperability	 approach	 whose	 main	 goal	 is	 to	 provide	 a	
standard	way	to	both	Discover	and	Access	heterogeneous	 IoT	objects	distributed	among	sparse	 IoT	
infrastructures.	 The	approach	 is	 based	on	 the	work	being	done	by	 the	Web	of	 Things	 (WoT)	WG5,	
where	a	proposal	 for	describing,	 exposing	and	 consuming	web	 things	 by	 leveraging	 Semantic	Web	
technologies	 is	 in	development.	Such	web	things	are	things	that	can	be	accessed	through	the	Web,	
either	physical	or	abstract.	

																																																													
5	https://www.w3.org/WoT/IG/	

	

	 VICINITY	Architectural	Design	 24	

	 	

	
Public	

	

	

One	of	the	pillars	of	the	W3C	WoT	is	the	Thing	Description	(TD),	which	aims	to	be	a	standard	frame	
to	support	describing	web	things	semantically	to	make	them	interoperable.	Thus,	TDs	are	expected	
to	cover	the	following	aspects:	

• Semantic	meta-data,	so	to	explicitly	specify	the	semantics	of	a	web	thing;	
• Thing’s	interaction	resources:	property,	action	and	event;	
• Security	including	concrete	prerequisites	to	access	things	are	stated;	
• Communications,	i.e.,	what	kind	of	protocols	and	data	exchange	formats	are	supported,	and	

which	endpoints	 are	 exposed	 to	 give	 access	 to	 the	 existing	 interaction	 resources	 of	 a	web	
thing.	

VICINITY	 builds	 on	 this	 standard	 frame	 rather	 to	 define	 a	 brand	 new	 one:	 Thing	 Ecosystem	
Description	 (TED).	 The	 purpose	 of	 bringing	 the	 TED	 frame	 into	 the	 VICINITY’s	 interoperability	
scenario	 is	 to	 support	describing	ecosystems	 of	Things,	 i.e.,	 sets	of	Things	 that	coexist	 in	 the	 same	
environment.	 In	 VICINITY,	 an	 IoT	 infrastructure	 makes	 up	 an	 ecosystem	 of	 IoT	 objects	 whose	
grounding	environment	 is	the	 infrastructure	 itself.	However,	the	VICINITY	 interoperability	approach	
also	considers	as	ecosystems	those	sets	of	IoT	objects	whose	common	environment	is	defined	by	the	
scope	of	a	query	context	for	discovery	and/or	accessing.	Such	ecosystems	made	up	of	query-relevant	
IoT	objects	shall	be	described	in	what	we	call	Virtual	TEDs	(VTEDs).	

Therefore,	 VICINITY	 shall	 rely	 on	 TDs	 to	 describe	 every	 IoT	 object	 (which	 can	 represent	 either	
physical	or	abstract	Things)	 that	belong	 to	any	 integrated	 IoT	 infrastructure,	which	 in	 turn	shall	be	
described	 in	 TEDs.	 Accordingly,	 each	 interested	 part	 in	 taking	 advantage	 of	 the	 semantic	
interoperability	solution	provided	by	VICINITY	must	at	 least	be	able	to	understand	such	description	
frames	as	well	as	the	Web	of	Things	ontology	(see	section	4.3.2).	

 IoT	objects’	discovery	

One	 of	 the	 main	 challenges	 of	 implementing	 interoperability	 in	 the	 IoT	 context	 is	 to	 enable	
consumers	to	discover,	in	a	distributed	and	dynamic	scenario,	those	IoT	objects	that	are	relevant	to	
their	 needs	 but	 without	 having	 any	 prior	 knowledge	 about	 them.	 The	 VICINITY	 interoperability	
approach	makes	the	following	assumptions	so	that	discovery	works:	

1. There	is	a	common	and	abstract	information	model	to	semantically	describe	Things;	
2. A	semantic	repository	of	Thing	descriptions	is	available	for	consumers	to	search	for	Things;	
3. Only	 those	 Things	 whose	 description	 is	 included	 in	 the	 semantic	 repository	 can	 be	

discovered;	
4. Consumers	learn	and	leverage	the	common	model	and	are	aware	of	the	semantic	repository;	
5. Consumers	 specify	 their	 discovery	 needs	 as	 a	 search	 criteria	 that	 makes	 use	 of	 both	 the	

semantic	model	and	the	TD	frame.	

Thus,	the	same	assumptions	in	VICINITY’s	terms	are	as	follows:	

1. The	VICINITY	Ontology	(see	section	4.3.2)	is	the	common	and	abstract	information	model	to	
be	used;	

2. The	 Semantic	 discovery	 &	 dynamic	 configuration	 agent	 platform	 (3.1.2)	 is	 the	 semantic	
repository.	The	W3C	Web	of	Things	TD	is	the	frame	to	be	used	for	describing	any	IoT	object	
integrated	in	VICINITY.	

3. Each	time	an	IoT	object	is	to	be	properly	integrated	in	VICINITY,	either	at	registration	time	or	
after	 any	 change	 in	 its	 configuration,	 a	 TD	 must	 be	 inserted	 or	 updated	 in	 the	 semantic	
repository.	

	

	 VICINITY	Architectural	Design	 25	

	 	

	
Public	

	

	

4. Gateway	 APIs	 (section	 3.2.2)	 of	 VICINITY	 Nodes	 are	 the	 semantic	 mediators	 between	 the	
actual	 consumers,	 e.g.,	 Adapters,	 and	 the	 repository	 of	 TDs.	 Therefore,	 they	 provide	 an	
interface	for	Discovery	requests.	

5. Gateway	 APIs	 must	 be	 able	 to	 specify	 discovery	 needs	 as	 semantic-based	 search	 criteria	
(SPARQL	query).	

	

Figure 7 Semantic interoperability approach for Discovery
	

As	 described	 in	 section	 2	 and	 represented	 in	 Figure	 7,	 the	 VICINITY	 is	 based	 on	 secure	 P2P	
communications	between	VICINITY	Nodes	 for	user	data	 transfers.	Further,	 the	P2P	Network	 is	also	
the	 secure	 channel	 that	 supports	 the	 discovery	 information	 flow	 between	 Gateway	 APIs	 and	 the	
Gateway	API	Services,	through	the	VICINITY	Communication	Server.	Consequently,	VICINITY	protects	
IoT	 objects	 from	 being	 discovered	 by	 those	 Nodes	 that	 are	 out	 of	 their	 owner’s	 Neighbourhood,	
implicitly	including	potential	consumers	that	are	not	part	of	VICINITY.	

In	 order	 to	 illustrate	 how	 discovery	 works	 in	 VICINITY,	 Figure	 5	 shows	 the	 following	 sequence	 of	
interactions:	

1. With	 the	 aim	 of	 keeping	 actual	 consumers	 agnostic	 of	 semantics	 and	 ontology	 details,	
Gateway	APIs	 shall	provide	an	 interface	 that	works	at	 syntactic	 level,	utilizing	 the	common	
VICINITY	 format	 to	specify	a	 schema-based	search	criteria.	 It	 is	 the	Gateway	API	who	must	
transform	such	request	into	its	corresponding	SPARQL	query.	

2. The	 newly	 created	 SPARQL	 query	 that	 represents	 the	 given	 search	 criteria	 is	 securely	
transmitted	to	the	Gateway	API	Services	through	the	P2P	Network.	

3. Once	the	Gateway	API	services	component	receives	a	search	criteria	in	the	form	of	a	SPARQL	
query,	 it	 is	 forwarded	 to	 the	 Neighbourhood	 Manager,	 which	 is	 responsible	 of	 applying	
neighbourhood-filtering	to	all	matching	TDs	obtained	from	the	TD	Repository;	keeping	only	
those	TDs	that	represent	IoT	objects	that	belong	to	consumer’s	virtual	neighbourhood.	

	

	 VICINITY	Architectural	Design	 26	

	 	

	
Public	

	

	

4. As	 the	 Gateway	 API	 Services	 component	 receives	 the	 filtered	 TDs	mentioned	 in	 step	 3,	 it	
encapsulates	them	into	a	Virtual	TED.	Such	VTED	describes	the	virtual	ecosystem	that	puts	in	
conjunction	the	TDs	that	matches	the	underlying	search	criteria.	

5. The	 Gateway	 API	 Services	 component	 sends	 the	 newly	 created	 VTED	 to	 the	 requester	
through	the	P2P	Network.	

6. After	 the	 VTED	 is	 intercepted	 by	 the	 Gateway	 API	 and	 properly	 processed,	 the	 set	 of	
discovered	 IoT	 objects	 along	 with	 all	 relevant	 identifiers	 and	 meta-data	 is	 extracted	 and	
returned,	in	the	common	VICINITY	format,	to	the	actual	consumer.	

 IoT	objects’	access	

As	 mentioned	 at	 very	 beginning	 of	 this	 section,	 the	 second	 goal	 of	 semantic	 interoperability	 in	
VICINITY	 is	 to	 enable	 accessing	 to	 heterogeneous	 IoT	 objects	 in	 such	 a	 way	 that	 any	 of	 their	
interaction	resources	can	be	effectively	consumed.	Here,	effectiveness	 implies	that	the	 information	
provided	 and/or	 required	 by	 these	 interaction	 resources	 must	 not	 only	 be	 collected	 but	 also	
understood.		

The	present	interoperability	approach	for	consuming	IoT	objects	assumes	the	following:	

1. All	endpoint	 declarations	 that	 are	 included	 in	 TDs	 for	 accessing	 interaction	 resources	must	
use	 schema-based	 representations	 (syntactic	 interoperability)	 for	 the	 data	 they	
provide/require;	

2. TDs	should	contain	the	required	access	mappings	to	explicitly	specify	the	semantics	of	data	
to	be	exchanged	with	the	endpoints.	By	applying	such	access	mappings,	schema-based	data	
becomes	semantic	data	(data	lifting6);	

3. Context	 enrichment	 of	 TDs	may	 include	 concepts	 and	 predicates	 from	 vocabularies	 to	 be	
used	to	specify	semantics	in	those	access	mappings.	

Again,	in	VICINITY’s	terms:	

1. The	common	VICINITY	format	shall	be	used	as	the	schema	to	represent	the	data	provided/	
required	by	endpoints.	

2. TDs	of	IoT	objects	may	include	predefined	access	mappings	for	each	declared	endpoint	that	
gives	access	to	the	corresponding	IoT	object’s	data.	If	necessary,	at	the	time	of	the	discovery	
process,	 the	Gateway	API	Services	may	dynamically	attach	query-relevant	access	mappings	
for	each	TD	included	in	the	resulting	Virtual	TED.	

3. Since	the	VICINITY	Ontology	aims	to	cover	different	level	of	abstractions	(e.g.,	core,	domain-
specific,	etc.),	any	concept	or	predicate,	at	any	abstraction	level,	may	be	used	to	enrich	the	
context	of	the	TDs.	

																																																													
6	Lifting	of	schema-based	data	to	reach	semantically	structured	and	 interlinked	data,	e.g.,	 from	plain	JSON	to	
RDF.	

	

	 VICINITY	Architectural	Design	 27	

	 	

	
Public	

	

	

	

Figure 8 Semantic interoperability approach for Accessing
	

Figure	 8	 illustrates	 an	 example	 of	 how	 VICINITY	 shall	 support	 semantic	 interoperability	 for	
consumption	of	 IoT	objects,	concretely,	 for	getting	property	values.	Similarly,	to	how	discovery	was	
illustrated	 in	Figure	7,	 this	diagram	describes	how	 the	approach	works	by	means	of	a	 sequence	of	
interactions:	

1. The	Gateway	API	 shall	 offer	 a	 dedicated	 interface	 for	 Consumption	 requests,	which	 in	 the	
example,	receives	two	getPropertyValue	commands	pointing	at	different	IoT	objects	(TC	and	
TD).	 It	 is	 assumed	 that	 the	 Gateway	 API	 was	 previously	 given	 a	 Virtual	 TED	 through	 a	
discovery	 request	 (step	 0).	 Thanks	 to	 this,	 the	 consumer	 can	 use	 the	 corresponding	
identifiers	of	each	 IoT	object	and	 their	properties	at	 the	 time	of	 invoking	both	commands.	
Again,	the	Consumption	interface	allows	consumers	to	be	agnostic	of	ontologies.	

2. The	Gateway	API	processes	the	first	command	and	sends	a	message	to	the	Node	that	hosts	
the	 referenced	 IoT	object.	 In	 this	 case,	 the	P2P	 communication	 can	be	directly	 established	
between	the	two	involved	Nodes.	

3. As	in	the	previous	step,	the	Gateway	API	processes	the	received	command,	but	in	this	case,	
the	recipient	Node	is	not	directly	reachable	due	to	some	network	constraint	in-between.	The	
Communication	 Server	 takes	 care	 of	 the	 issue	 and	 makes	 sure	 that	 the	 message	 finally	
reaches	its	addressed	Node.	

4. Once	the	corresponding	Gateway	API	of	the	recipient	Node	gets	the	message,	it	queries	the	
TED	that	describes	 its	own	 infrastructure	 to	determine	the	specific	endpoints	 that	must	be	
invoked.	 Having	 all	 raw	 data	 collected	 from	 its	 underlying	 infrastructure,	 the	 recipient	

	

	 VICINITY	Architectural	Design	 28	

	 	

	
Public	

	

	

Gateway	API	composes	a	response	message	and	sends	it	back	to	the	requester	(through	the	
Communication	Server).	

5. Same	process	as	described	in	step	4,	except	for	the	P2P	communication	does	not	require	an	
intermediary.	

The	 Gateway	 API	 processes	 both	 incoming	 response	 messages	 separately	 and	 applies	 the	
corresponding	access	mappings	specified	in	the	previously	given	Virtual	TED.	For	each	response	and	
after	the	data	lifting	process	is	completed,	the	Gateway	API	extracts	the	property	value	by	querying	
the	just	lifted	semantic	data.	Finally,	the	Gateway	API	returns	each	result	obtained	and	represented	
in	the	common	VICINITY	format.	

	

	 VICINITY	Architectural	Design	 29	

	 	

	
Public	

	

	

 Information	view	
This	section	describes	the	flow	of	information	between	VICINITY	components	as	summarized	on	the	
following	Figure	9.	The	information	flows	can	be	grouped	in	following	groups:	

• Semantic	data	flows	including	semantic	discovery	and	query,	IoT	object	descriptions,	virtual	
IoT	object	descriptions	and	templates;	

• Configuration	data	flows	including	IoT	object	meta-data	and	various	VICINITY	configurations;	
• Syntactic	data	flows	for	transmission	of	user	data.	

	

Figure 9 VICINITY Architecture information flow
	 	

	

	 VICINITY	Architectural	Design	 30	

	 	

	
Public	

	

	

	

 VICINITY	Cloud	

 VICINITY	Neighbourhood	manager	

The	VICINITY	Neighbourhood	manager	shall	facilitate	the	following	information	flows:	

Table 1 Information flow from VICINITY Neighbourhood manager

Information	flow	 Destination	 Reason	

Discovery	query	 Semantic	discovery	and	
dynamic	configuration	platform	

Virtual	neighbourhood	manager	
uses	Discovery	query	to	search	
for	Things	in	neighbourhood.	

IoT	objects	descriptions	(TDs)	 Semantic	discovery	and	
dynamic	configuration	platform	

Semantic	discovery	and	dynamic	
configuration	platform	needs	IoT	
object	description	to	perform	
semantic	lifting	on	IoT	object	
description.	

IoT	objects	descriptions	(TDs)	 VICINITY	Gateway	API	Services	 VICINITY	Gateway	API	Services	
needs	set	of	IoT	objects	
description	(as	result	of	Discovery	
query)	constrained	by	virtual	
neighbourhood	sharing	access	
rules.	

VICINITY	Node	configurations	 VICINITY	Communication	
Server	

VICINITY	Communication	Server	
distributes	configuration	to	
respective	VICINITY	Nodes.	

 Semantic	discovery	and	agent	configuration	

Semantic	discovery	and	agent	configuration	shall	facilitate	the	following	information	flows:	

Table 2 Information flow from Semantic discovery and agent configuration

Information	flow	 Destination	 Reason	

IoT	objects	templates	 VICINITY	
Neighbourhood	
Manager	

VICINITY	Neighbourhood	
Manager	enables	to	configure	
IoT	objects	manually	by	user.	

IoT	objects	descriptions	(TDs)	 VICINITY	
Neighbourhood	
Manager	

VICINITY	Neighbourhood	
Manager	needs	TDs	as	result	of	
the	discovery	queries	and	
semantic	lifting.	

VICINITY	Agent	configurations	 VICINITY	
Neighbourhood	
Manager	

VICINITY	Neighbourhood	
Manager	shall	forward	an	Agent	
configuration	to	VICINITY	Node.	

	

	

	 VICINITY	Architectural	Design	 31	

	 	

	
Public	

	

	

 VICINITY	Gateway	API	Services	

VICINITY	Gateway	API	Services	shall	facilitate	the	following	information	flows:	

Table 3 Information flow from VICINITY Gateway API Services

Information	flow	 Destination	 Reason	

Discovery	query	 VICINITY	Neighbourhood	
Manager	

VICINITY	Neighbourhood	
Manager	forwards	the	discovery	
query	to	semantic	platform.	

Virtual	IoT	objects	description	
(VTEDs)	

VICINITY	Communication	
Server	

VICINITY	Communication	Server	
forwards	VTED	to	VICINITY	
Gateway	API.	

	

 VICINITY	Communication	Server	

The	VICINITY	Communication	server	shall	facilitate	the	following	information	flows:	

Table 4 Information flow from VICINITY Communication Server

Information	flow	 Destination	 Reason	

Discovery	query	 VICINITY	Gateway	API	
Services	

VICINITY	Communication	Server	forwards	
Discovery	query	to	VICINITY	Gateway	API	Services.	

VICINITY	Node	
configurations	

VICINITY	
Communication	Node	

VICINITY	Communication	Server	shall	forward	
VICINITY	Node	configuration	to	relevant	VICINITY	
Nodes.	

VICINITY	Node	auto-
configurations	

VICINITY	
Neighbourhood	
Manager	

VICINITY	Communication	Server	shall	forward	
auto-configuration	of	VICINITY	Node	for	VICINITY	
User	acknowledgement.	

IoT	object	meta-data	 VICINITY	
Neighbourhood	
Manager	

VICINITY	Communication	Server	shall	forward	to	
VICINITY	Neighbourhood	Manager	new	IoT	object	
description	received	from	VICINITY	Nodes.	

	

 VICINITY	Node	

 VICINITY	Communication	Node	

The	VICINITY	Communication	Node	shall	facilitate	the	following	information	flows:	

Table 5 Information flow from VICINITY Communication Node

Information	flow	 Destination	 Reason	

User	data	 VICINITY	Communication	
Node,	VICINITY	Gateway	API	

To	exchange	of	user	data	through	P2P	
Network	

VICINITY	Node	auto-
configurations	

VICINITY	Gateway	API	 To	forwards	Agent	and	Gateway	API	
configuration	updates	

	

	 VICINITY	Architectural	Design	 32	

	 	

	
Public	

	

	

Information	flow	 Destination	 Reason	

VICINITY	Node	auto-
configurations	

VICINITY	Communication	
Server	

To	forward	auto-configuration	to	
VICINITY	Neighbourhood	Manager	for	
processing	

IoT	object	meta-data	 VICINITY	Communication	
Server	

To	forward	description	for	semantic	
mapping	

IoT	object	descriptions	
(VTED)	

VICINITY	Gateway	API	 To	forward	VTEDS	to	configure	APIs	

	

 VICINITY	Gateway	API	

The	VICINITY	Gateway	API	shall	facilitate	following	information	flows:	

Table 6 Information flow from VICINITY Gateway API

Information	flow	 Destination	 Reason	

Discovery	query		 VICINITY	
Communication	
Server	

To	forward	discovery	query	to	VICINITY	
Neighbourhood	Manager.	

User	data	 VICINITY	
Communication	
Node,	VICINITY	
Agent/Adapter	

To	forward	user	data	through	P2P	Network.	

VICINITY	Agent	&	Gateway	
API	auto-configurations	

VICINITY	
Communication	
Node	

To	forward	Agent	and	Gateway	API	
configuration	to	VICINITY	Neighbourhood	
Manager	to	setup	interoperability	during	
initialization	process.	

VICINITY	Agent	
configuration	

VICINITY	Agent	 To	forward	Agent	configuration	updates	to	
VICINITY	Agent.	

IoT	object	meta-data	 VICINITY	
Communication	
Node	

To	forward	new	IoT	object	description	for	
semantic	mapping	in	semantic	platform.	

	

 VICINITY	Agent/	Adapter	

The	VICINITY	Agent/	Adapter	shall	facilitate	the	following	information	flows:	

Table 7 Information flow from VICINITY Agent/ Adapter

Information	flow	 Destination	 Reason	

Discovery	query	 VICINITY	Gateway	API	 To	discover	the	virtual	neighbourhood.	

User	data	 VICINITY	Gateway	API	 To	forward	user	data	through	P2P	Network.	

	

	 VICINITY	Architectural	Design	 33	

	 	

	
Public	

	

	

Information	flow	 Destination	 Reason	

VICINITY	Agent	auto-
configurations	

VICINITY	Gateway	API	 To	forward	initial	Agent	configuration	to	
VICINITY	Neighbourhood	Manager	to	initialize	
interoperability	setup.	

IoT	object	meta-data	 VICINITY	Gateway	API	 To	forward	new	IoT	object	description	for	
semantic	mapping	in	semantic	platform.	

	

 Data	storages	
This	section	describes	the	concept	of	information	management	in	the	VICINITY.	The	following	type	of	
storages	has	been	identified:	

• Global	neighbourhood	storage	storing	virtual	neighbourhood	data	including	social	network	of	
organizations,	users,	IoT	objects	including	sharing	rules	and	profile7s.	This	storage	includes	
VICINITY	Node	components	configuration	as	well;	

• Semantic	Model	and	Agent	Configuration	Storage	encompasses	semantic	description	of	each	
IoT	objects	and	their	relationships.	

These	storages	are	maintained	by	two	core	VICINITY	components:	

• VICINITY	Neighbourhood	Manager	masters	global	neighbourhood	storage;	
• Semantic	discovery	&	dynamic	configuration	agent	platform	masters	semantic	model	&	

agent	configurations.	

	
Figure 10 VICINITY Data storages

																																																													
7	The	profile	 is	set	of	entity	 (IoT	object,	user,	organization)	properties	configurable	 in	VICINITY	Neighborhood	
manager.	Sub	set	of	IoT	object	profile	is	IoT	object	description.	

	

	 VICINITY	Architectural	Design	 34	

	 	

	
Public	

	

	

Data	 from	 storages	 are	distributed	with	 the	VICINITY	 architecture	by	executing	VICINITY	processes	
described	in	section	5	through	defined	information	flows	defined	in	4.1	and	4.2.	

 Global	neighbourhood	storage	

The	Global	neighbourhood	storage	managed	by	VICINITY	Neighbourhood	Manager	includes	following	
items:	

• User	and	Organization;	
• IoT	objects	references	(devices	and	value-added	services)	and	Group	of	IoT	objects;	
• Security	Access	Rules;	
• VICINITY	Node	configurations;	

 User	and	Organization	

VICINITY-ARCH-INF-010	 User	and	Organization	entities	

Global	neighbourhood	storage	shall	include	Organization	with	assigned	Users	registered	in	VICINITY.	

Users	(human	and	non-human)	entity	includes:	

• Identifier,	
• credentials,	
• profile,	
• set	of	roles	within	related	organization.	

Organization	entity	includes:	

• organization	profile,	
• set	of	references	to	assigned	users,	
• set	of	references	to	owned	VICINITY	Nodes,	
• set	of	references	to	owned	groups	of	IoT	Objects,	
• set	of	references	to	assigned	sharing	access	rules.	

Considered	requirements:	

VICINITY-NFUNC-PRV010	

 Sharing	Access	Rules		
VICINITY-ARCH-INF-030	 Sharing	Access	Rules	

Global	 neighbourhood	 storage	 shall	 include	 Sharing	 Access	 Rules	 which	 defines	 single	 sharing	
decision	of	IoT	object	virtual	neighbourhood.	

Sharing	Access	Entry	shall	reference:	

• Reference	to	Organization	to	which	sharing	access	is	granted;	
• Sharing	access	privilege;	
• Reference	to	IoT	object	(including	property,	action	and	event)	or	Group	of	IoT	objects.	

Considered	requirements:	

VICINITY-NFUNC-PRV010,	VICINITY-FUNC-UCR020,	VICINITY-FUNC-UCR070,		
	

	

	 VICINITY	Architectural	Design	 35	

	 	

	
Public	

	

	

 VICINITY	Node	Configurations	

VICINITY-ARCH-INF-040	 VICINITY	Nodes	Configurations	

Global	neighbourhood	storage	shall	include	each	VICINITY	Node,	which	is	referenced	to	organization	
and	IoT	Objects.	

VICINITY	Nodes	shall	include	set	of	actual	configurations	of:	

• VICINITY	Communication	Node;	
• VICINITY	Gateway	API;	
• VICINITY	Agent	/	Adapter.	

Configuration	shall	include:	

• Identity	 of	 the	 configuration’s	 source	 (e.g.	 VICINITY	 Neighbourhood	 Manager,	 Semantic	
discovery	and	agent	configuration	platform);	

• Identity	of	the	configuration’s	destination;	
• Configuration	identifier;	
• Configuration	data;	
• Data	integrity	attributes	(optionally).	

Considered	requirements:	

VICINITY-NFUNC-PRV010	
	

VICINITY-ARCH-INF-045	 VICINITY	Node	configuration	acknowledgement	

The	configuration	update	acknowledgement	shall	include:	

• Identity	of	the	configuration’s	source;	
• Identity	of	the	configuration’s	destination;	
• Configuration	identifier;	
• Configuration	ACK;	
• Data	integrity	parameters	(optionally).	

Considered	requirements:	

VICINITY-NFUNC-SEC050	
	

 Semantic	Model	and	Agent	Configuration	Storage	

The	 storage	 includes	 the	models	of	 all	 objects	 able	 to	 interact	with	VICINITY	 agents/adapters.	 The	
purpose	 of	 this	 storage	 is	 to	 provide	 the	 semantic	 descriptions	 of	 stored	 items	 to	 enable	 the	
machine-readable	semantic	interpretation.	Semantic	enhancement	of	object	descriptions	also	enable	
to	perform	several	querying	and	lookups	in	semantic	way.	

The	 storage	 will	 be	 implemented	 as	 high-performance	 semantic	 triplestore	 providing	 standard	
semantic	search	services,	such	as	SPARQL	endpoint.	

Generally,	the	storage	includes	two	basic	items:	semantic	meta-models	and	semantic	representation	
of	IoT	objects	(TEDs).	

	

	

	 VICINITY	Architectural	Design	 36	

	 	

	
Public	

	

	

	

VICINITY-ARCH-INF-050	 Semantic	meta-models	

Semantic	meta-models:	the	upper	ontologies,	hierarchies	of	objects,	types,	domain	specific	models.	
Generally,	 the	models	 providing	 basic	 semantic	 context	 of	 IoT	 objects.	 All	 semantic	 instances	 are	
mapped	 to	 these	 meta-models	 to	 enable	 common	 automatic	 interpretation	 of	 semantic	
information.	

Considered	requirements:	

VICINITY-FUNC-UCR080,	VICINITY-FUNC-UCR120	
	

Semantic	 description	 of	 objects,	 which	 reside	 in	 infrastructures,	 that	 are	 integrated	 into	 VICINITY	
platform.	Usually,	the	IoT	object	provides	the	set	of	services	for	interaction.	It	can	be	physical	device	
or	sensor,	but	in	terms	of	VICINITY,	it	can	be	also	the	value-added	service.	The	purpose	of	semantic	
enrichment	is	to	enable	performance	semantic	queries/lookups,	but	also	automatic	interpretation	of	
object	properties	and	services.	

VICINITY-ARCH-INF-060	 IoT	object	description	

The	IoT	object	description	of	IoT	object	contains:	

• the	identifier	of	IoT	object;	
• description	of	interaction	with	IoT	object:	the	set	of	services,	actions	or	events	provided	by	

device;	
• description	 of	 grounding	 information	 of	 device	 interaction	 possibilities	 (e.g.	 endpoints,	

protocols,	input/output	parameter	description);	
• additional	 properties	 enabling	 more	 precise	 semantic	 interpretation,	 such	 as	 capabilities	

(e.g.	has	display	or	measures	temperature);	
• the	manufacturer	and	model	information	in	case	if	IoT	object	is	physical	device.	

Considered	requirements:	

VICINITY-FUNC-UCR070,	VICINITY-FUNC-UCR110	
	

There	are	two	types	of	IoT	object	instances:	

• IoT	 object	 templates:	 preconfigured	 models	 for	 each	 specific	 IoT	 object	 types,	 generally	
describing	the	objects	(e.g.	specific	device	model).	These	templates	are	used	in	discovery	and	
configuration	 process	 to	 create	 mapping	 between	 physical	 IoT	 objects	 and	 corresponding	
models.	For	each	specific	IoT	object	there	exists	the	generic	IoT	object	template.	For	each	IoT	
object,	the	discovery	process	finds	the	template,	which	 is	used	to	create	specific	 IoT	object	
instance.	

• IoT	object	description:	the	role	of	discovery	process	is	to	find	the	proper	object	template	for	
each	physical	IoT	object.	Once	this	matching	is	successful,	the	new	unique	instance	for	each	
physical	IoT	object	is	created	from	identified	template	and	mapping	is	created.	Thus,	for	each	
physical	IoT	object	there	exists	its	own	corresponding	instance	in	semantic	repository.		
	

Generally,	there	are	two	different	descriptors	of	IoT	objects:	
• the	 IoT	 object	meta-data:	 provided	 by	 VICINITY	 Agent,	 containing	 basic	 information	 about	

the	object	used	to	find	the	corresponding	IoT	object	template	

	

	 VICINITY	Architectural	Design	 37	

	 	

	
Public	

	

	

• IoT	 object	 template:	 representing	 generic	model	 of	 specific	 IoT	 object	 type	 (e.g.	model	 of	
concrete	sensor).	

 VICINITY	semantic	models	

In	the	information	technologies	context,	ontologies	can	be	defined	as	“formal,	explicit	specifications	
of	 a	 shared	 conceptualisation”.	 The	 VICINITY	 ontologies	 will	 be	 formal	 in	 the	 sense	 of	 following	
Description	Logics	and	being	implemented	in	the	W3C	Web	Ontology	Language	standard	OWL8.	The	
conceptualization	 to	 be	 shared	 among	 the	 VICINITY	 components	 and	 plugged	 systems	 will	 cover	
different	 domains	 of	 interest	 ranging	 from	 horizontal	 domains	 like	 time	 and	 space	 to	 specific	
definitions	need	within	the	VICINITY	ecosystem.	For	this	reason,	as	shown	in	Figure	11,	the	VICINITY	
approach	 is	 based	 on	 a	 modular	 ontology	 network	 in	 which	 existing	 standard	 ontologies	 will	 be	
reused	whenever	possible.		

In	 summary,	 the	 ontology	 network	 will	 be	 composed	 by:	 1)	 cross-domain	 ontologies	 (horizontal	
domains)	addressing	the	modelling	of	general	concepts	 like	time,	space,	web	things,	 that	would	be	
reused	and	probably	extended	by	2)	the	VICINITY	platform	oriented	ontology	that	will	represent	the	
information	needed	to	exchange	IoT	descriptor	data	between	peers	and	that	would	be	extended	by	
3)	domain	oriented	ontologies	that	would	cover	vertical	domains	such	as	health,	transport,	buildings,	
etc.		

																																																													
8	https://www.w3.org/TR/owl-ref/	

	

	 VICINITY	Architectural	Design	 38	

	 	

	
Public	

	

	

	
Figure 11 VICINITY ontology network design

As	 it	 is	also	shown	 in	 the	Figure	11,	VICINITY	ontological	modules	might	be	reused	by	external	use	
cases	or	applications.	As	depicted	in	the	left	side	of	the	figure,	the	ontological	requirements	that	will	
guide	 the	 ontology	 development	 will	 come	 from	 VICINITY	 partners	 needs	 and	 VICINITY	
documentation.		

Apart	 from	 the	 domain-specific	 ontological	 requirements,	 the	 VICINITY	 ontologies	 development	 is	
based	on	the	following	non-functional	requirements:	

• Reuse:	 existing	 ontologies	 or	 standard	 models	 will	 be	 reused	 when	 possible	 increasing	
interoperability	with	external	systems	that	might	be	already	using	such	ontologies.	This	point	
is	also	applied	at	a	meta-level	by	using	standard	 technologies	 to	 implement	 the	ontologies	
themselves.	

• Modularity:	 the	 ontology	 should	 be	 designed	 as	 a	 network	 in	 which	 modules	 might	 be	
interconnected	and	refer	to	others.	

• Extensibility:	the	ontologies	should	allow	the	development	of	third-party	extensions.	

Finally,	the	ontologies	will	be	developed	following	methodologies	and	best	practices	commonly	used	
in	 ontological	 engineering	 to	 address	 ontology	 development	 activities	 such	 as	 design,	
implementation,	evaluation,	publication,	and	documentation,	among	others.	

Legend

Document

Document

health

building

transport

VICINITY
Domain
Ontologies

VICINITY
Crossdomain
Ontologies

Space
Web of
ThingsTime

Upper
Level

time

space Vicinity
core ontology

Service

VICINITY
Use case
Ontologies

External
Use case
Ontologies

VICINITY
Requirements

Health Transport Building

Use case 2Use case 1

Use case N Use case M Use case O

Us
ab

ilit
y

Re
us

ab
ilit

y

-+

+-

drives

is reused by

is extended by
concept

	

	 VICINITY	Architectural	Design	 39	

	 	

	
Public	

	

	

 Process	view	
This	 chapter	 defines	 the	 set	 of	 processes	 driving	 interaction	 between	 VICINITY	 components	
supporting	the	following	functionality	provided	by	VICINITY	described	in	D1.5.	

• Device	register	and	discovery;	
• Deploy	value-added	services;	
• Interoperability	setup;	
• Connecting	IoT	infrastructure	into	VICINITY;	
• VICINITY	Security	&	privacy	features;	
• VICINITY	User	notification;	

VICINITY-ARCH-PRC-010	 VICINITY	Cross	component	processes:	

The	VICINITY	shall	support	functionalities	by	the	following	cross	component	processes:	

• Connecting	VICINITY	 (5.1.1)	 supports	 setup	of	 communication	channels	between	VICINITY	
Nodes’	components	and	VICINITY	Cloud;	

• VICINITY	Node	configuration	distribution	(5.1.2)	manages	distribution	of	any	configuration	
change	(such	as	IoT	object	lifecycle	change	in	VICINITY,	sharing	access	rule	change,	security	
and	 privacy	 configuration	 change,	 agent	 configuration	 change)	 originated	 in	 the	 VICINITY	
Cloud	to	relevant	VICINITY	Nodes	components;	

• Semantic	discovery	of	IoT	Objects	(5.1.3)	provides	IoT	objects	registration	processes	within	
VICINITY,	 including	 IoT	 objects	 semantic	 normalization	 and	 IoT	 objects	 search	 within	
VICINITY	neighbourhood;	

• User	 data	 exchange	 facilitation	 (5.1.4)	 provides	 processes	 to	 exchange	 data	 between	
VICINITY	Nodes	utilizing	the	semantic	interoperability.	

Considered	requirements:	

VICINITY-FUNC-UCR060,	 VICINITY-FUNC-UCR090,	 VICINITY-FUNC-UCR100,	 VICINITY-FUNC-UCR130,	
VICINITY-FUNC-UCR140,	VICINITY-FUNC-UCR145	

This	chapter	focuses	only	on	processes	spanning	across	more	than	one	component.	Significant	single	
component	processes	(functions)	are	subject	of	detail	design.	

 Connecting	VICINITY	

The	 Connecting	 VICINITY	 process	 goal	 is	 to	 setup	 communication	 between	 the	 VICINITY	 Node	
components	 and	 VICINITY	 Cloud	 component	 including	 configuration	 of	 virtual	 neighbourhood	 and	
agent	 platform	 model.	 The	 communication	 is	 setup	 manually	 with	 optional	 automatic	 pre-
configuration.	

VICINITY-ARCH-PRC-020	 VICINITY	Node	communication	setup	

The	VICINITY	shall	 support	manual	 setup	communication	 interfaces	of	VICINITY	Node	components	
with	VICINITY	Cloud	components:	

• VICINITY	Communication	Node,	
• VICINITY	Gateway	API,	
• VICINITY	Agent/Adapter.	

by	System	integrator.	

	

	 VICINITY	Architectural	Design	 40	

	 	

	
Public	

	

	

Considered	requirements:	

VICINITY-FUNC-UCR140	
	

VICINITY-ARCH-PRC-030	 VICINITY	Node	auto-configuration		

The	 VICINITY	 shall	 support	 automatic	 auto-configuration	 of	 communication	 interfaces	 setup	 of	
VICINITY	Node	components:	

• VICINITY	Communication	Node,	
• VICINITY	Gateway	API,	
• VICINITY	Agent/Adapter	

by	System	integrator.	

Considered	requirements:	

VICINITY-FUNC-UCR140	
	

VICINITY-ARCH-PRC-040	 VICINITY	Node	configuration	store		

The	 VICINITY	 shall	 store	 VICINITY	 Node	 components	 identities	 and	 its	 configuration	 in	 virtual	
neighbourhood	and	agent	platform.	

Considered	requirements:	

VICINITY-FUNC-UCR140,	VICINITY-NFUNC-PER050	
	

VICINITY-ARCH-PRC-050	 VICINITY	Node	registration	request		

The	VICINITY	Node	registration	request	should	include:	

• Identity	of	the	registration	request;	
• Identity	of	user	under	which	registration	is	performed;	
• Identity	of	VICINITY	Communication	Node;	
• Identity	of	VICINITY	Gateway	API;	
• Identity	of	VICINITY	Agent/Adapter;	
• Initial	configuration	of	each	component	including	at	least:	

o Component	identifier	(if	available);	
o Identifier	of	component’s	interfaces.	

Considered	requirements:	

VICINITY-FUNC-UCR140	
	

 Manual	VICINITY	Node	registration	

The	 manual	 registration	 of	 VICINITY	 Node	 is	 performed	 by	 System	 integrator	 through	 VICINITY	
Neighbourhood	Manager	(Figure	12).	VICINITY	Neighbourhood	Manager	registers	VICINITY	Nodes	in	
agent	platform	and	performs	VICINITY	Node	configuration	change	process	to	distribute	configuration	
to	VICINITY	Nodes	components.	

	

	 VICINITY	Architectural	Design	 41	

	 	

	
Public	

	

	

	
Figure 12 Manual VICINITY Node registration process

 Manual	VICINITY	Node	removal	

The	 manual	 removal	 of	 VICINITY	 Node	 is	 performed	 by	 IoT	 Operator	 through	 VICINITY	
Neighbourhood	Manager	 (Figure	 13).	 VICINITY	Neighbourhood	Manager	 sends	 removal	 request	 to	
VICINITY	Node.	When	the	removal	of	VICINITY	Node	from	P2P	network	is	acknowledged	by	VICINITY	
Communication	 Server	 then	 VICINITY	 Node	 is	 removed	 from	 the	 Semantic	 discovery	 and	 agent	
configuration	platform.	

	

Figure 13 Manual VICINITY Node removal

 Auto-configuration	of	VICINITY	Node		

The	 auto-configuration	 of	 VICINITY	 Node	 initiates	 registration	 process	 of	 VICINITY	 Nodes	 from	
VICINITY	Agent,	through	VICINITY	Gateway	API	to	VICINITY	Communication	Node	(Figure	14).	After	a	
request	 arrives	 in	 VICINITY	 Neighbourhood	 Manager	 the	 manual	 registration	 process	 shall	 be	
executed	 after	 acknowledgement	 of	 a	 System	 integrator,	 where	 System	 integrator	 can	 validate	
and/or	update	VICNITY	Node	configurations.	 The	auto-configuration	process	 is	 an	extension	of	 the	
manual	registration	process.	

	

	 VICINITY	Architectural	Design	 42	

	 	

	
Public	

	

	

	
Figure 14 Auto-configuration of VICINITY Node

 VICINITY	Node	configuration	distribution	

The	VICINITY	 goal	 of	VICINITY	Node	 configuration	distribution	process	 is	 to	distribute	 the	VICINITY	
configuration	 changes	 to	 relevant	 VICINITY	 Node.	 Every	 configuration	 change	 needs	 to	 be	
acknowledged	by	the	configuration	destination	component.	

VICINITY-ARCH-PRC-060	 VICINITY	Node	configuration	distribution	

The	VICINITY	shall	support	distribution	of	the	VICINITY	Node	configuration	(4.3.1.3)	to:	

• VICINITY	Communication	Node,	
• VICINITY	Gateway	API,	
• VICINITY	Agents	

through	VICINITY	Communication	server.	

Considered	requirements:	

VICINITY-FUNC-UCR060,	 VICINITY-FUNC-UCR090,	 VICINITY-FUNC-UCR100,	 VICINITY-FUNC-UCR130,	
VICINITY-FUNC-UCR140	
	

VICINITY-ARCH-PRC-090	 VICINITY	Node	configuration	processing	

The	VICINITY	Node’s	Component	shall	validate	VICINITY	Node	configuration	before	its	processing.	

The	 VICINITY	 Node’s	 Component	 forwards	 only	 configuration	 attributes	 relevant	 for	 destination	
component.	

Each	 VICINITY	 Node’s	 component	 shall	 send	 VICINITY	 Node	 configuration	 updated	
acknowledgement	after	successful	processing	of	configuration	update.	

Considered	requirements:	

VICINITY-FUNC-UCR060,	 VICINITY-FUNC-UCR090,	 VICINITY-FUNC-UCR100,	 VICINITY-FUNC-UCR130,	
VICINITY-FUNC-UCR140	

 Configuration	update	distribution	

This	process	transmits	the	IoT	object	configuration	update	from	VICINITY	Neighbourhood	Manager	to	
VICINITY	Communication	Node,	and	optionally	to	VICINITY	Agent/Adapter	and	VICINITY	Gateway	API.	
The	 Configuration	 is	 distributed	 through	 VICINITY’s	 P2P	 Network	 to	 VICINITY	 Node	 components.	
Afterwards,	it	is	processed	by	VICINITY	Node’s	components	in	cascade	manner.	Each	VICINITY	Node’s	

	

	 VICINITY	Architectural	Design	 43	

	 	

	
Public	

	

	

component	 acknowledges	 the	 process	 of	 its	 configuration	 separately	 in	 case	 of	 configuration	was	
provided	through	the	configuration	distribution	process.		

	
Figure 15 VICINITY Node configuration distribution process

 Semantic	discovery	of	IoT	objects	

The	goal	of	the	Semantic	discovery	of	IoT	objects	is	twofold:	

• to	 search	 of	 IoT	 objects	 in	 the	 VICINITY	 neighbourhood	 manager	 with	 support	 of	 the	
semantic	data	stored	in	Semantic	discovery	and	Agent	configuration	platform;	

• to	 maintain	 semantic	 data	 of	 VICINITY	 neighbourhood	 manager	 including	 agent	
configuration.	

	

VICINITY-ARCH-PRC-110	 Search	of	VICINITY	Neighbourhood	

The	VICINITY	shall	provide	search	in	vicinity	neighbourhood	manager	to	discover	IoT	objects	based	
on	request	from:	

• VICINITY	Neighbourhood	manager	requested	by	VICINITY	Users;	
• VICINITY	Gateway	API	requested	by	VICINITY	Adapter	or	VICINITY	Agent.	

The	VICINITY	 shall	 constrain	 search	by	 applying	of	 sharing	 access	 rules	based	on	 identity	 resulted	
from	discovery	search.	

Considered	requirements:	

VICINITY-FUNC-UCR080,	VICINITY-FUNC-UCR120,	VICINITY-FUNC-UCR160	
	

VICINITY-ARCH-PRC-120	 Manual	IoT	object	registration	

The	VICINITY	shall	support	registration	of	new	IoT	objects	based	on	request	from:	

• VICINITY	Neighbourhood	manager	requested	by	VICINITY	Users.	

	

	 VICINITY	Architectural	Design	 44	

	 	

	
Public	

	

	

VICINITY-ARCH-PRC-120	 Manual	IoT	object	registration	

The	new	IoT	object	requested	from	VICINITY	Gateway	API	shall	be	acknowledged	by	VICINITY	User.	

VICINITY	 shall	 store	 IoT	 object	 description	 (TD)	 in	 semantic	 model	 and	 distribute	 IoT	 object	
configuration	to	VICINITY	Node	components.	

Considered	requirements:	

VICINITY-FUNC-UCR060,	VICINITY-FUNC-UCR080,	VICINITY-FUNC-UCR100,	VICINITY-FUNC-UCR120	
	

VICINITY-ARCH-PRC-130	 IoT	object	registration	from	VICINITY	Adapter/Agent	

The	VICINITY	shall	optionally	support	registration	of	new	IoT	objects	based	on	request	from:	

• VICINITY	Gateway	API	requested	by	VICINITY	Adapter	or	VICINITY	Agent.	

The	new	IoT	object	requested	from	VICINITY	Gateway	API	shall	be	acknowledged	by	VICINITY	User.	

Considered	requirements:	

VICINITY-FUNC-UCR060,	VICINITY-FUNC-UCR080,	VICINITY-FUNC-UCR100,	VICINITY-FUNC-UCR120	
	

VICINITY-ARCH-PRC-140	 IoT	object	descriptors	

The	 VICINITY	 shall	 support	 periodically	 search	 of	 external	 IoT	 descriptors	 repository	 for	 new	 IoT	
object	descriptors.	

Each	new	IoT	object	descriptor	shall	be	mapped	to	VICINITY	Ontology	and	relevant	VICINITY	Agent	
should	be	configured	to	be	able	to	discover	IoT	objects	implementing	the	descriptor.	

Considered	requirements:	

N/A	

 Search	for	IoT	objects	in	VICINITY	

These	processes	perform	the	search	of	IoT	objects	based	on	request	from:	

• VICINITY	Neighbourhood	Manager	performed	by	VICINITY	Users	(Figure	15);	
• VICINITY	Gateway	API	performed	by	VICINITY	Agents	and/	or	VICINITY	Adapter	(Figure	16).	

Search	 for	 IoT	 objects	 can	 be	 performed	 by	 VICINITY	 User	 directly	 in	 VICINITY	 Neighbourhood	
Manager	which	utilizes	semantic	data	search	request	and	returns	the	set	of	 IoT	object	descriptions	
(Figure	15).	

	

	 VICINITY	Architectural	Design	 45	

	 	

	
Public	

	

	

	

Figure 16 Semantic search of IoT objects from VICINITY Neighbourhood Manager
However,	 VICINITY	 Gateway	 API	 provides	 discovery	 service	 for	 VICINITY	 Agents	 /	 Adapters.	 The	
VICINITY	 Gateway	 API	 utilizes	 VICINITY	 Gateway	 API	 Services	 through	 VICINITY	 Communication	
Server.	The	VICINITY	Communication	Server	acts	as	communication	border	between	VICINITY	Node	
components	and	VICINITY	Cloud.	Afterwards,	request	is	forwarded	through	VICINITY	Neighbourhood	
Manager,	which	applies	sharing	access	rules	to	result	of	the	semantic	data	search	results	(List	of	TDs)	
based	on	context	of	identity	under	which	search	is	performed.	

	
Figure 17 Semantic search of IoT objects from VICINITY Gateway API

 Manual	IoT	Object	registration,	change	of	configuration	and	removal	

Any	 manual	 change	 of	 IoT	 object	 (registration,	 configuration	 change,	 removal)	 is	 performed	 by	
VICINITY	User	 through	VICINITY	Neighbourhood	Manager.	VICINITY	Neighbourhood	Manager	sends	
an	 IoT	 Object	 change	 in	 Semantic	 discovery	 platform	 and	 update	 relevant	 VICINITY	 Nodes	 with	
sharing	access	rules	utilizing	VICINITY	Node	configuration	change	process.	

	

	 VICINITY	Architectural	Design	 46	

	 	

	
Public	

	

	

	

Figure 18 Manual change of IoT object
	

 Automatic	registration	of	new	IoT	Objects	

This	process	enables	to	register	new	IoT	objects	by	VICINITY	Agent	/	Adapter.	Requests	for	new	IoT	
objects	 are	 sent	 to	 VICINITY	 Neighbourhood	Manager	 for	 configuration	 and	 approval	 by	 VICINITY	
User	(Device	owner	or	Service	provider).	 IoT	objects	descriptions	shall	be	stored	in	semantic	model	
and	IoT	object	configuration	should	be	forwarded	to	VICINITY	Node	components.	

	
Figure 19 Automatic registration of IoT object in VICINITY

The	 same	 process	 is	 applied	 in	 case	 of	 any	 automatic	 device	 configuration	 change,	 however	
automatic	device	removal	cannot	be	performed.	

 Crawling	of	external	repositories	of	IoT	object	templates	

This	process	performs	crawling	of	external	repositories	of	 IoT	objects	templates	(see	section	4.3.2).	
Each	 new	 IoT	 object	 template	 is	 mapped	 to	 VICINITY	 Ontology.	 IoT	 normalized	 description	 is	
provided	 to	 VICINITY	 Neighbourhood	 manager	 for	 manual	 IoT	 object	 registration	 functionality.	
Moreover,	the	relevant	VICINITY	Agents	are	updated	being	able	to	discover	new	IoT	objects.	

	

	 VICINITY	Architectural	Design	 47	

	 	

	
Public	

	

	

	
Figure 20 Crawling external repositories process

	

 User	data	exchange	facilitation	

The	User	 data	 exchange	 facilitation	 processes	 enable	 to	 consume	 and	 expose	 IoT	 objects	 through	
VICINITY,	 thus	VICINITY	Nodes	 can	 have	 the	 role	 of	 clients	 (consuming	 IoT	 objects)	 and/or	 servers	
(exposing	IoT	objects)	of	VICINITY	P2P	network.	

VICINITY-ARCH-PRC-150	 IoT	objects	interaction	patterns	

VICINITY	 shall	 support	 the	 following	 interaction	patterns	 to	exchange	user	data	between	VICINITY	
Node	through	VICINITY	P2P	network:	

• Getting	IoT	object	property;	
• Setting	IoT	object	property;	
• Calling	action	of	IoT	object;	
• Receiving	of	event	from	IoT	object.	

Considered	requirements:	

VICINITY-FUNC-UCR145	

 Consuming	of	Things	through	the	VICINITY	

This	 section	 defines	 the	 user	 data	 exchange	 processes	 from	 the	 point	 of	 view	 of	 VICINITY	 Agent/	
Adapter	(A),	which	consumes	IoT	objects	through	the	VICINITY	from	VICINITY	Communication	Node	
(B).	The	VICINITY	Agent/	Adapter	(A)	consumes	IoT	objects	by:	

• “getting”	IoT	object’s	property;	
• “setting”	IoT	object’s	property;	
• calling	action	of	IoT	object;	
• receiving	of	event	from	IoT	object.	

	

	 VICINITY	Architectural	Design	 48	

	 	

	
Public	

	

	

5.1.4.1.1. “Getting”	property	of	consumed	IoT	object	

This	process	enables	VICINITY	Agent	/	Adapter	(A)	to	get	property	of	consumed	IoT	object.	The	get	
property	 request	 and	 response	 are	 communicated	 through	 the	 VICINITY	 P2P	 network	 applying	
message	en/decryption	(based	on	consumed	IoT	object	configuration)	and	authorization	check	based	
on	sharing	access	rules	considering	context	of	VICINITY	Agent/	Adapter	(A)	identity.	

	
Figure 21 “Getting” property of consumed IoT object

5.1.4.1.2. “Setting”	property	of	consumed	IoT	object	

This	process	enables	VICINITY	Agent	/	Adapter	 (A)	 to	set	property	of	consumed	 IoT	object.	The	set	
property	 request	 and	 response	 are	 communicated	 through	 the	 VICINITY	 P2P	 network	 applying	
message	en/decryption	(based	on	consumed	IoT	object	configuration)	and	authorization	check	based	
on	sharing	access	rules	considering	context	of	VICINITY	Agent/	Adapter	(A)	identity.	

	

	 VICINITY	Architectural	Design	 49	

	 	

	
Public	

	

	

	

Figure 22 “Setting” property of consumed IoT object

5.1.4.1.3. Calling	action	of	consumed	IoT	object	

This	process	enables	VICINITY	Agent	/	Adapter	(A)	to	call	action	of	consumed	IoT	object.	The	action	
request	 and	 response	 are	 communicated	 through	 the	 VICINITY	 P2P	 network	 applying	 message	
en/decryption	 (based	 on	 consumed	 IoT	 object	 configuration)	 and	 authorization	 check	 based	 on	
sharing	access	rules	considering	context	of	VICINITY	Agent/	Adapter	(A)	identity.	

	
Figure 23 Calling action of consumed IoT object

	 	

	

	 VICINITY	Architectural	Design	 50	

	 	

	
Public	

	

	

	

5.1.4.1.4. Receiving	event	from	consumed	IoT	object	

This	 process	 enables	 VICINITY	 Agent	 /	 Adapter	 (A)	 to	 receive	 consumed	 IoT	 object.	 The	 event	
message	 and	 optionally	 event	 acknowledgement	 are	 communicated	 through	 the	 VICINITY	 P2P	
network	 applying	 message	 en/decryption	 (based	 on	 consumed	 IoT	 object	 configuration)	 and	
authorization	check	based	on	sharing	access	rules	considering	context	of	VICINITY	Agent/	Adapter	(A)	
identity.	

	

Figure 24 Receiving event from consumed IoT object

 Exposing	of	things	through	the	VICINITY	

This	 section	 defines	 the	 user	 data	 exchange	 processes	 from	 the	 point	 of	 view	 of	 VICINITY	 Agent/	
Adapter	(B),	which	exposes	IoT	objects	through	the	VICINITY	for	VICINITY	Communication	Node	(A).	
The	VICINITY	Agent/	Adapter	(B)	exposes	IoT	objects	by:	

• “getting”	IoT	object’s	property;	
• “setting”	IoT	object’s	property;	
• receiving	action	of	IoT	object;	
• emitting	of	event	from	IoT	object.	

	

	 VICINITY	Architectural	Design	 51	

	 	

	
Public	

	

	

5.1.4.2.1. “Getting”	property	of	exposed	IoT	object	

This	process	enables	VICINITY	Agent	/	Adapter	(B)	to	receive	request	for	get	property	of	exposed	IoT	
object	including	provision	of	property	value	for	VICINITY	Communication	Node	(A).	The	get	property	
request	 and	 response	 are	 communicated	 through	 the	 VICINITY	 P2P	 network	 applying	 message	
en/decryption	 (based	 on	 consumed	 IoT	 object	 configuration)	 and	 authorization	 check	 based	 on	
sharing	access	rules	considering	context	of	VICINITY	Agent/	Adapter	(A)	identity.	

	
Figure 25 “Getting” property of exposed IoT object

5.1.4.2.2. “Setting”	property	of	exposed	IoT	object	

This	process	enables	VICINITY	Agent	/	Adapter	(B)	to	receive	request	to	set	property	of	exposed	IoT	
object	including	provision	of	property	value	for	VICINITY	Communication	Node	(A).	The	set	property	
request	 and	 response	 are	 communicated	 through	 the	 VICINITY	 P2P	 network	 applying	 message	
en/decryption	 (based	 on	 consumed	 IoT	 object	 configuration)	 and	 authorization	 check	 based	 on	
sharing	access	rules	considering	context	of	VICINITY	Communication	Node	(A)	identity.	

	

	 VICINITY	Architectural	Design	 52	

	 	

	
Public	

	

	

	
Figure 26 "Setting" property of exposed IoT object

5.1.4.2.3. Receiving	action	of	exposed	IoT	object	

This	process	enables	VICINITY	Agent	/	Adapter	(B)	to	receive	action	of	exposed	IoT	object.	The	action	
request	 and	 response	 are	 communicated	 through	 the	 VICINITY	 P2P	 network	 applying	 message	
en/decryption	 (based	 on	 consumed	 IoT	 object	 configuration)	 and	 authorization	 check	 based	 on	
sharing	access	rules	considering	context	of	VICINIT	Agent/	Adapter	(A)	identity.	

	
Figure 27 Receiving action of exposed IoT object

	

	 VICINITY	Architectural	Design	 53	

	 	

	
Public	

	

	

5.1.4.2.4. Emitting	event	of	exposed	IoT	object	

This	 process	 enables	VICINITY	Agent	 /	Adapter	 (B)	 to	 emit	 event	of	 exposed	 IoT	object.	 The	event	
message	 and	 optionally	 event	 acknowledgement	 are	 communicated	 through	 the	 VICINITY	 P2P	
network	 applying	 message	 en/decryption	 (based	 on	 consumed	 IoT	 object	 configuration)	 and	
authorization	 check	 based	on	 sharing	 access	 rules	 considering	 context	 of	 VICINITY	 Communication	
Node	(A)	identity.	

	
Figure 28 Emitting event of exposed IoT object

 Mapping	of	VICINITY	Functionalities	to	VICINITY	Architecture	processes	

These	processes	can	be	mapped	to	the	VICINITY	functionalities	defined	in	D1.5	as	follows:	

Table 8 Mapping of VICINITY Functionalities to VICINITY Architecture processes

Main	functionality	 Detailed	functions	 Process	

Connecting	 IoT	 infrastructure	
into	VICINITY	

VICINITY	 Nodes	
registration	 and	
deregistration	

Connecting	VICINITY	

Data	 exchange	
facilitation	

Consuming	 of	 things	 through	 the	
VICINITY;	

	

	 VICINITY	Architectural	Design	 54	

	 	

	
Public	

	

	

Main	functionality	 Detailed	functions	 Process	

Exposing	of	things	through	the	VICINITY;	

Device	register	and	discovery	 Register	new	device	 Registration	of	new	IoT	object;	

VICINITY	Node	configuration	distribution;	

Crawling	of	external	repositories	

Configure	IoT	device	 VICINITY	Node	configuration	distribution	

Remove	IoT	device	 VICINITY	Node	configuration	distribution	

Deploy	value-added	services	 Register	 new	 value-
added	service	

Registration	of	new	IoT	object;	

VICINITY	Node	configuration	distribution;	

Crawling	of	external	repositories	

Configure	Value-added	
service	

VICINITY	Node	configuration	distribution	

Remove	 value-added	
service	

VICINITY	Node	configuration	distribution	

Interoperability	setup	 Change	in	organization	
partnership;	

VICINITY	Node	configuration	distribution	

Change	 in	 IoT	 Device	
sharing	access	rules;	

VICINITY	Node	configuration	distribution	

Change	in	Value-added	
service	 sharing	 access	
rules;	

VICINITY	Node	configuration	distribution	

VICINITY	 Security	 &	 privacy	
features	

Updating	 access	 rules	
to	IoT	objects	

VICINITY	Node	configuration	distribution;	

VICINITY	User	notification;	

Updating	 security	 &	
privacy	configuration	

VICINITY	Node	configuration	distribution;	

VICINITY	User	notifications	 	 VICINITY	User	notification;	

	

	

	 VICINITY	Architectural	Design	 55	

	 	

	
Public	

	

	

 Interfaces	View	
This	 section	defines	 set	of	 interfaces	between	VICINITY	Components	 summarized	 in	 Figure	29.	The	
interfaces	 are	 specified	 by	 name,	 component	 providing	 interface,	 component	 using	 interfaces	
integration	pattern	and	conceptual	data	exchanged	through	the	interface.	

	

Figure 29 VICINITY Interface view

 VICINITY	Cloud	

 VICINITY	Neighbourhood	manager	

The	VICINITY	Neighbourhood	manager	shall	provide	following	interfaces:	

Table 9 Interfaces provided by VICINITY Neighbourhood manager

Name	of	Interface	 Used	by	 Integration	
pattern	

Data	Exchanged	

Authentication	service	 VICINITY	Communication	Node,	
VICINITY	Gateway	API,	VICINITY	
Agent	

Token	request	and	
validation	

User	credentials,	
Security	tokens	

	

	 VICINITY	Architectural	Design	 56	

	 	

	
Public	

	

	

Name	of	Interface	 Used	by	 Integration	
pattern	

Data	Exchanged	

Neighbourhood	
discovery	service	

VICINITY	Gateway	API	Services	 Request/Response	 Discovery	query,	
IoT	Object	
descriptions	
(TEDs)	

Registry	service	 VICINITY	Communication	Server	 Request/Response	 IoT	Objects	
meta-data	

Semantic	model	change	
notifications	

Semantic	Platform	 Request/Response	 IoT	Objects	
templates	

 Semantic	discovery	and	dynamic	configuration	agent	platform	

Semantic	discovery	and	agent	configuration	shall	provide	the	following	interfaces:	

Table 10 Interfaces provided by Semantic discovery and dynamic configuration agent platform

Name	of	Interface	 Used	by	 Integration	
pattern	

Data	Exchanged	

Semantic	discovery	
service	

VICINITY	Neighbourhood	
Manager	

Request/	Response	 Discovery	query,	IoT	
Objects	descriptions	
(TEDs)	

Registry	Service	 VICINITY	Neighbourhood	
Manager	

Request/	Response	 IoT	Object	meta-data,	
IoT	Object	description	
(TD)	

	

 VICINITY	Gateway	API	Services	

VICINITY	Gateway	API	Services	shall	provide	following	interfaces:	

Table 11 Interfaces provided by VICINITY Gateway API Services

	

 VICINITY	Communication	Server	

The	VICINITY	Communication	server	shall	provide	following	interfaces:	

Table 12 Interface provided by VICINITY Communication Server

Name	of	Interface	 Used	by	 Integration	pattern	 Data	Exchanged	

Discovery	service	 VICINITY	
Gateway	API	

Request/Response	 Discovery	query,	Virtual	IoT	
Objects	descriptions	(VTEDs)	

Name	of	Interface	 Used	by	 Integration	pattern	 Data	Exchanged	

Discovery	service	 VICINITY	
Communicati
on	server	

Request/	Response	 Discovery	query,	Virtual	IoT	objects	
descriptions	(VTEDs)	

	

	 VICINITY	Architectural	Design	 57	

	 	

	
Public	

	

	

Name	of	Interface	 Used	by	 Integration	pattern	 Data	Exchanged	

VICINITY	Node	
Configuration	Service	

VICINITY	
Neighbourhood	
Manager	

Message	Delivery	 VICINITY	Node	Configuration	

Registry	Service	 VICINITY	
Communication	
Node	

Message	Delivery	 IoT	Object	meta-data,	VICINITY	
Node	auto-configurations	

	

 VICINITY	Node	

The	VICINITY	Node	encompasses	following	components:	

• VICINITY	Communication	Node;	
• VICINITY	Gateway	API;	
• VICINITY	Agent/Adapter.	

 VICINITY	Communication	Node	

The	VICINITY	Communication	Node	shall	provide	the	following	interfaces:	

Table 13 Interface provided by VICINITY Communication Node

Name	of	Interface	 Used	by	 Integration	pattern	 Data	Exchanged	

Data	forwarding	API	 VICINITY	Gateway	API	 Message	Delivery	 User	data		

VICINITY	Node	
Configuration	Service	

VICINITY	Communication	
Server	

Message	Delivery	 VICINITY	Node	
Configuration	

Registry	Service	 VICINITY	Communication	
Server	

Message	Delivery	 IoT	Object	meta-data,	
VICINITY	Node	auto-
configurations	

Data	forwarding	P2P	 VICINITY	Communication	
Node	

Message	Delivery	 User	data		

	

 VICINITY	Gateway	API	

The	VICINITY	Gateway	API	shall	provide	the	following	interfaces:	

Table 14 Interface provided by VICINITY Gateway API

Name	of	Interface	 Used	by	 Integration	pattern	 Data	Exchanged	

Discovery	and	query	
service	

VICINITY	Agent/Adapter	 Request/Response	 Discovery	query,	
Virtual	IoT	Objects	
descriptions	(VTEDs)	

Consuming	service	 VICINITY	Agent/Adapter	 Request/Response	 User	data	

VICINITY	Node	
Configuration	Service	

VICINITY	Agent/Adapter	 Message	Delivery	 VICINITY	Node	
Configuration	

	

	 VICINITY	Architectural	Design	 58	

	 	

	
Public	

	

	

Name	of	Interface	 Used	by	 Integration	pattern	 Data	Exchanged	

Registry	Service	 VICINITY	Agent/Adapter	 Message	Delivery	 IoT	Object	meta-
data,	VICINITY	Node	
auto-configurations	

	

 VICINITY	Agent/	Adapter	

The	VICINITY	Adapter/	Agent	shall	provide	the	following	interfaces:	

Table 15 Interface provided by VICINITY Agent/ Adapter

Name	of	Interface	 Used	by	 Integration	pattern	 Data	Exchanged	

VICINITY	Node	
Configuration	Service	

VICINITY	Gateway	API	 Message	Delivery	 VICINITY	
Configuration	
messages	

Exposing	service	 VICINITY	Gateway	API	 Request/Response	 User	data	

	

	

	 VICINITY	Architectural	Design	 59	

	 	

	
Public	

	

	

 Deployment	view	
As	 described	 in	 architecture	 concept	 section	 2,	 the	 VICINITY	 is	 broken	 down	 into	 two	 main	
architecture	components	VICINITY	Cloud	and	VICINITY	Node.	The	VICINITY	Cloud	and	VICINITY	Node	
instances	 (One	 VICINITY	 Node	 instance	 per	 integrated	 infrastructure	 and	 Value-added	 service	
platform)	are	connected	to	build	distributed	VICINITY	P2P	network.	

The	VICINITY	P2P	network	 is	 in	 line	with	geographical	distribution	of	 integrated	 IoT	 infrastructures	
and	value	added	service	platform.	Thus,	VICINITY	P2P	network	by	 its	nature	enables	distribution	of	
data	exchange	and	computation	load	according	to	current	needs	of	integrated	infrastructures.	

Moreover,	 loosely	 coupled	VICINITY	P2P	network	promotes	 localisation	of	 the	 single	 failure	of	 the	
VICINITY	Node	or	VICINITY	Cloud.	

 VICINITY	deployment	of	VICINITY	Cloud	

	
Figure 30 VICINITY Cloud deployment strategy

The	VICINITY	Cloud	encompasses	of	 four	 scalable	components	deployed	on	platform	enabling	high	
availability.	The	high	availability	platform	shall	provide	features	to	manage	life-cycle	of	the	VICINITY	
Cloud	components	on	the	level	of	“virtualized	operating	service”.	

VICINITY-ARCH-DEP010	 VICINITY	Cloud	components	scalability	

VICINITY	 Cloud	 components	 (including	 subcomponents	 and	 underlying	 technology)	 shall	 support	
horizontal	 (scale	 in/out)	 and	 vertical	 (scale	 up/down)	 scaling	 independently	 in	 each	 layer	 such	 as	
user,	service	(including	integration	services)	and	data.	

Considered	requirements:	

VICINITY-NFUNC-AVL010,	 VICINITY-NFUNC-AVL020,	 VICINITY-NFUNC-PER010,	 VICINITY-NFUNC-
PER020	
	

Scale	in/out	or	horizontal	scaling	enables	to	execute	several	instances	of	the	same	component	(or	its	
subcomponents).	 Number	 of	 executed	 instances	 can	 be	 adjusted	 to	 serve	 necessary	 amount	 of	
execution	 requests.	 Components	 need	 to	 support	 load-balancing	 of	 their	 interfaces	 to	 other	
components	or	users	transparently.	

	

	 VICINITY	Architectural	Design	 60	

	 	

	
Public	

	

	

Scale	up/down	or	vertical	scaling	enables	optimize	the	usage	of	high	availability	platform	resources	
(such	as	CPU,	Memory,	Storage	space)	assigned	to	instances	of	components.	

Detailed	deployment	strategy	of	each	VICINITY	Cloud	component	is	part	of	their	detailed	design.	

	

VICINITY-ARCH-DEP020	 VICINITY	Cloud	components’	deployment	independence	

VICINITY	 Cloud	 components’	 detailed	 deployment	 designs	 shall	 not	 influence	 of	 designs	 of	 other	
VICINITY	Cloud	components.	

Any	VICINITY	Cloud	component	deployment	shall	not	influence	of	deployment	of	other	components.	

Considered	requirements:	

VICINITY-NFUNC-AVL020	
	

 VICINITY	deployment	of	VICINITY	Node	
To	 enable	 communication	 between	 IoT	 devices	 via	 the	 VICINITY	 P2P	 Network,	 the	 VICINITY	 Node	
needs	to	act	as	a	“gateway”.	Thus,	it	needs	to	“translate”	native	communication	and	semantics	of	its	
attached	devices	into	VICINITY	ontology	and	expose	it	via	the	VICINITY	Gateway	API	to	other	VICINITY	
Nodes	through	the	VICINITY	P2P	network.	

	
Figure 31 VICINITY Node deployment strategy

VICINITY	Nodes	 is	 the	“virtual”	 component	hosted	on	 the	Gateway	HW	or	SW	Host	platform.	Each	
component	 of	 VICINITY	 Node	 such	 as	 VICINITY	 Agent,	 VICINITY	 Gateway	 API	 and	 VICINITY	
Communication	Node	acts	as	independent	loosely	coupled	deployable	unit.	

VICINITY-ARCH-DEP030	 VICINITY	Node	components	flexible	deployment		

VICINITY	 Node	 components	 shall	 support	 loosely	 coupling	 enabling	 flexible	 deployment	 setup	
according	to	host	platform	abilities.	

Considered	requirements:	

	

	 VICINITY	Architectural	Design	 61	

	 	

	
Public	

	

	

VICINITY-NFUNC-MNT007,	VICINITY-NFUNC-MNT020	
	

 Components	monitoring	
VICINITY-ARCH-DEP040	 VICINITY	components’	deployment	monitoring	

VICINITY	 components	 shall	 provide	 means	 to	 support	 standard	 protocols	 for	 monitoring	 of	
resources	and	endpoints	and	services	(such	as	JMX,	SNMP,	etc.).	

Any	VICINITY	component	deployment	shall	not	influence	of	deployments	of	other	components.	

Considered	requirements:	

VICINITY-NFUNC-MNT010	

	

	 VICINITY	Architectural	Design	 62	

	 	

	
Public	

	

	

 Detail	architecture	design	of	VICINITY	components	

 VICINITY	Neighbourhood	Manager	

 Purpose	

The	 goal	 of	 VICINITY	 Neighbourhood	 Manager	 is	 to	 provide	 user	 interface	 for	 VICINITY	 Users	 to	
manage	virtual	neighbourhood	and	interoperability	as	service.	

 Functions	

The	VICINITY	Neighbourhood	manager	shall	have	the	following	components:	

• User	 interface	 providing	 searching	 and	 virtual	 neighbourhood	 management	 including	
VICINITY	Node	configuration;	

• Virtual	Neighbourhood	manager	providing	internal	services	such	as:	
o Social	network	management	including	sharing	access	rules	setup;	
o VICINITY	Node	configuration	update	services;	
o User	notification	services.	

• Authentication	 and	 authorization	 module	 shall	 authenticate	 users	 and	 technical	 users	
including	VICINITY	components;	

• Integration	module	shall	support	integration	to	other	VICINITY	components	such	as	VICINITY	
Communication	 Server,	 Gateway	 API	 Services	 and	 Semantic	 discovery	 &	 dynamic	
configuration	agent	platform;	

• Router	 component	 for	 management	 of	 communication	 within	 VICINITY	 Neighbourhood	
management;	

• Storages	for:	
o User	authentication	and	authorization,	
o Global	neighbourhood	storage,	
o Consent	and	terms	of	condition	storage,	
o Auditing	storage.	

	
Figure 32 Component diagram of VICINITY Neighbourhood Manager
VICINITY-ARCH-DD-010	 VICINITY	Neighbourhood	manager	functions	

The	VICINITY	Neighbourhood	Manager	shall	support	VICINITY	User	through	user	interface	to:	

• to	search	for	IoT	objects,	users,	organizations	through;	
• to	manage	social	network	of	organizations	and	IoT	objects;	

	

	 VICINITY	Architectural	Design	 63	

	 	

	
Public	

	

	

VICINITY-ARCH-DD-010	 VICINITY	Neighbourhood	manager	functions	

• to	manage	sharing	access	rules;	
• to	configure	VICINITY	Nodes;	
• to	manage	consents	and	terms	of	conditions;	
• to	manage	users	and	organizations;	
• to	process	user	notifications;	
• to	store	user	auditing;	
• to	authenticate	and	authorize	users.	

Considered	requirements:	

VICINITY-NFUNC-SEC060,	 VICINITY-NFUNC-SEC070,	 VICINITY-NFUNC-PRV020,	 VICINITY-NFUNC-
PRV030,	VICINITY-NFUNC-PRV040,	VICINITY-FUNC-UCR010,	VICINITY-FUNC-UCR020,	VICINITY-FUNC-
UCR030,	 VICINITY-FUNC-UCR040,	 VICINITY-FUNC-UCR050,	 VICINITY-FUNC-UCR060,	 VICINITY-FUNC-
UCR070,	 VICINITY-FUNC-UCR090,	 VICINITY-FUNC-UCR100,	 VICINITY-FUNC-UCR110,	 VICINITY-FUNC-
UCR130,	 VICINITY-FUNC-UCR140,	 VICINITY-FUNC-UCR150,	 VICINITY-FUNC-UCR160,	 VICINITY-FUNC-
UCR165,	VICINITY-FUNC-UCR170,	VICINITY-FUNC-UCR190	

 Dependencies	

The	 VICINITY	 Neighbourhood	 manager	 has	 the	 following	 dependencies	 to	 other	 VICINITY	 Core	
components:	

• Semantic	discovery	&	dynamic	configuration	agent	platform;	
• Gateway	API	Services;	
• VICINITY	Communication	Server;	

 Interfaces	

Interfaces	of	VICINITY	Neighbourhood	manager	are	identified	and	described	in	sections	6.1.1.	

VICINITY-ARCH-DD-020	 VICINITY	Neighbourhood	Manager	User	Interface	performance	

VICINITY	 Neighbourhood	Manager	 shall	 provide	 user	 interface	 response	 time	 up	 to	 5s	 in	 routine	
operations	such	as:	authentication,	simple	search,	list	of	IoT	objects,	exploring	own	neighbourhood.	

Considered	requirements:	

VICINITY-FUNC-UCR180,	VICINITY-NFUNC-PER010	
	

 Resources	

The	VICINITY	Neighbourhood	manager	manages	following	resources:	

• User	authentication	and	authorization,	
• Global	neighbourhood	storage,	
• Consent	and	terms	of	condition	storage,	
• Auditing	storage.	

	

VICINITY-ARCH-DD-030	 VICINITY	Neighbourhood	Manager	Storage	performance	

VICINITY	Neighbourhood	Manager	shall	provide	means	to	recover	of	the	following	storages	in	case	

	

	 VICINITY	Architectural	Design	 64	

	 	

	
Public	

	

	

VICINITY-ARCH-DD-030	 VICINITY	Neighbourhood	Manager	Storage	performance	

of	component	failure:	

• User	authentication	and	authorization	storage;	
• Global	neighbourhood	storage;	
• Consent	and	terms	of	condition	storage;	
• Auditing	storage.	

Considered	requirements:	

VICINITY-NFUNC-PRV020	
	

 Data	

The	data	managed	by	VICINITY	Neighbourhood	manager	are	described	in	4.3.1.	

 VICINITY	Communication	Server	and	Node	

 Purpose	

The	objective	of	the	VICINITY	Communication	server	and	Node:	

• Setup	communication	channels;	
• Data	forwarding	between	peers	in	P2P	network;	
• Providing	VICINITY	security	services	including	end-to-end	encryption	and	device	verification.	

 Functions	

The	 VICINITY	 Communication	 Server	 and	 VICINITY	Node	 are	 surrounding	 components	 for	 VICINITY	
P2P	network.	These	components	can	be	broken	in	the	following	functional	blocks.	

VICINITY-ARCH-DD-040	 VICINITY	Communication	Server	functional	blocks	

The	VICINITY	Communication	Server	shall	consist	of	the	following	functional	blocks:	

• Transaction	 Module	 –	 support	 communication	 to	 Discovery	 services,	 Registry	 and	
Configuration	 service	 to	 Gateway	 API,	 Gateway	 API	 Services	 and	 Virtual	 Neighbourhood	
Management	it	consists	of	three	components:	

o Discovery	 processor	 as	 simple	 discovery	 of	 things	 service	 forwarder	 between	
Gateway	API	and	Gateway	API	Service;	

o VICINITY	Configuration	processor	as	configuration	splitter	to	VICINITY	Node;	
o Registration	processor	as	validator	of	IoT	object	registration	services.	

• P2P	 Network	 Manager	 –	 manages	 the	 P2P	 peer	 network	 including	 in	 P2P	 network	
authentication	and	global	white/black	list	management;	

• P2P	Network	Server	Endpoint	–	message	broker	for	the	P2P	Network;	
• Configuration	storage.	

Considered	requirements:	

VICINITY-FUNC-UCR145,	 VICINITY-FUNC-UCR140,	 VICINITY-FUNC-UCR130,	 VICINITY-FUNC-UCR090,	
VICINITY-FUNC-UCR040	
	

	

	 VICINITY	Architectural	Design	 65	

	 	

	
Public	

	

	

VICINITY-ARCH-DD-040	 VICINITY	Communication	Node	functional	blocks	

The	VICINITY	Communication	Node	shall	consist	of	the	following	functional	blocks:	

• P2P	Network	Endpoint	 as	message	broker	 for	 the	P2P	Network	 transmitting	P2P	Network	
Messages	including	local	white	and	blacklist	of	peers;	

• Authorization	Services	filtering	out	unauthorized	messages	from	P2P	Network;	
• Encryption	Services	performing	encryption	or	decryption	of	the	messages;	
• Message	Router	performing	inner	VICINITY	Node	Routing	of	the	messages;	
• Gateway	API	Endpoint	translates	Gateway	API	request	and	responses	to/from	P2P	Network	

messages	and	provides	privacy	filtering	(see	following	note);	
• Node	Configuration	stores	all	VICINTIY	Communication	Node	related	configuration.	

Considered	requirements:	

VICINITY-FUNC-UCR145		
Note	that,	privacy	 filter	service	 filters	out	unnecessary	user	data	 from	changed	messages	based	on	
IoT	 object	 interface	 description,	 to	 ensure	 that	 only	 requested	 data	 are	 transmitted.	 Software	
integrators	usually	provide	more	generic	user	data	services	than	necessary	to	simplify	interfaces	and	
implementation,	which	might	result	in	privacy	issues.	Privacy	filter	simple	erases	any	user	data	which	
should	not	be	transmitted	for	selected	user	data	formats	(such	as	JSON	or	XML).	

	
Figure 33 Functional blocks of VICINITY Communication Server and Node

	

VICINITY-ARCH-DD-040	 VICINITY	P2P	network	security	

VICINITY	 shall	 support	 following	 security	 services	 on	 VICINITY	 Communication	 Node	 based	 on	
configuration	and	service	availability	on	the	IoT	objects:	

• P2P	message	payload	encryptions	and	decryptions	based	on	IoT	object	descriptions;	
• Authorization	checks	of	P2P	messages	based	on	sharing	access	rules.	

Considered	requirements:	

	

	 VICINITY	Architectural	Design	 66	

	 	

	
Public	

	

	

VICINITY-NFUNC-SEC020	
	

	

	

VICINITY-ARCH-DD-050	 VICINITY	P2P	network	protection	

VICINITY	shall	provide	means	to	support	protection	of	VICINITY	P2P	against:	

• Message	flooding	in	case	of	VICINITY	Communication	Node	reconnection	into	P2P	network;	
• VICINITY	Communication	Node	message	flooding	in	VICINITY	P2P	Network.	

VICINITY	 Communication	 Node	 shall	 support	 to	 block	 or	 unblock	 other	 VICINITY	 Communication	
Nodes.	

Considered	requirements:	

VICINITY-NFUNC-SEC020,	VICINITY-NFUNC-SEC030	
	

VICINITY-ARCH-DD-060	 VICINITY	P2P	network	performance	

VICINITY	 P2P	 Network	 shall	 support	 near	 to	 real-time	 VICINITY	 P2P	 message	 delivery	 between	
VICINITY	Communication	Nodes.	

	

VICINITY	P2P	Network	shall	provide	means	to	support	prioritization	of	the	P2P	messages.	

Considered	requirements:	

VICINITY-NFUNC-MNT020,	 VICINITY-NFUNC-PER010,	 VICINITY-NFUNC-PER020,	 VICINITY-NFUNC-
PER030	
	

Note	that	VICINITY	Communication	Server	and	Node	providing	and	consuming	interfaces	in-line	with	
integration	view	(6.1.1.3,	6.1.2.1).	

 Dependencies	

The	VICINITY	Communication	Server	depends	on:	

• VICINITY	Neighbourhood	manager;	
• VICINITY	Gateway	API	Services;	
• Semantic	discovery	&	dynamic	configuration	platform.	

The	VICINITY	Communication	Node:	

• VICINITY	Neighbourhood	manager;	
• VICINITY	Communication	Server.	

 Interfaces	

Interfaces	of	VICINITY	Communication	Server	and	VICINITY	Communication	Node	are	 identified	and	
described	in	sections	6.16.1.1.3	and	6.1.2.1.	

	

	 VICINITY	Architectural	Design	 67	

	 	

	
Public	

	

	

 Resources	

The	VICINITY	Communication	Server	and	Node	manages	following	resources:	

• Storage	of	IoT	object	descriptions;	
• Storage	of	IoT	object	sharing	rules;	
• Storage	of	VICINITY	Communication	Server	and	Node	configuration;	

	

VICINITY-ARCH-DD-070	 VICINITY	Communication	Server	and	Node	storage	performance	

VICINITY	Communication	Server	and	Node	shall	provide	means	to	recover	of	the	following	storages	
in	case	of	component	failure:	

• Storage	of	IoT	object	descriptions;	
• Storage	of	IoT	object	sharing	rules;	
• Storage	of	VICINITY	Communication	Server	and	Node	configuration.	

Considered	requirements:	

VICINITY-NFUNC-PER040	
	

 Data	

The	VICINITY	Communication	Server	maintains	following	information:	

• VICINITY	Configuration	splitting	rules;	
• P2P	Network	Server	Endpoint	configuration	
• P2P	Network	configuration;	
• Registry	and	Discovery	of	Things	service	configuration;	

The	VICINITY	Communication	Node	maintains	following	information:	

• IoT	object	descriptions	(TDs)	including	encryption	services	configuration	(4.3.2);	
• Set	of	sharing	access	entries	for	authorization	services	(4.3.1.2);	
• Gateway	API	endpoint	configuration;	
• VICINITY	Communication	Node	credentials;	
• Message	router	configuration;	
• P2P	Network	endpoint	configuration;	

	

VICINITY-ARCH-DD-080	 VICINITY	P2P	network	messages	

VICINITY	P2P	network	messages	transmitted	in	P2P	network	shall	include:	

• Message	identity	context;	
• Source	of	message;	
• Destination	of	message;	
• Message	identifier;	
• Message	type;	
• Message	contents;	
• Data	integrity	attributes.	

	

	 VICINITY	Architectural	Design	 68	

	 	

	
Public	

	

	

Considered	requirements:	

VICINITY-FUNC-UCR145,	VICINITY-NFUNC-SEC040	
	

VICINITY-ARCH-DD-090	 VICINITY	Communication	Node	data	availability	

VICINITY	 Communication	 Node	 shall	 support	 serialization	 of	 exchanged	 messages	 (VICINITY	 P2P	
Network	and	Gateway	API	messages)	including	ability	to	recovery	from	failure	behaviour.	

Considered	requirements:	

VICINITY-NFUNC-PER040	
	

 Semantic	discovery	&	dynamic	configuration	agent	platform	(IS)	

 Purpose	

General	purpose	of	this	component	is	to	provide	the	semantic	interoperability	when	handling	the	IoT	
objects.	There	are	following	main	purposes	of	this	component:	

• to	perform	semantic	discovery	of	IoT	objects;	
• to	perform	dynamic	configuration	of	agents;	
• to	store	semantic	information	and	to	provide	search/lookup	services	for	IoT	objects;	
• to	manage	a	list	of	external	IoT	descriptor	repositories.	

 Function	

The	core	of	automatic	semantic	discovery	and	dynamic	agent	configuration	is	the	process	of	mapping	
of	physical	IoT	object	into	its	semantic	representation.	Each	time,	the	new	IoT	object	is	 introduced,	
discovery	platform	will	match	the	semantic	template	corresponding	to	this	object	(e.g.	specific	device	
model)	 and	 create	 the	 new	 unique	 instance	 with	 persistent	 identifier	 shared	 across	 VICINITY	
platform.	 The	 new	 instance	 (the	 semantic	 description	 -	 TED)	 will	 be	 mapped	 to	 the	 physical	 IoT	
object	and	will	be	used	as	 its	 semantic	 representation.	Semantic	search	will	be	 then	performed	on	
semantic	 representations	of	 IoT	objects	and	matching	 instances	will	be	 returned	 together	with	 the	
mapping	 to	 corresponding	 physical	 IoT	 devices	 and	 their	 location	 (identifier	 of	 VICINITY	 node	
responsible	 for	 interaction	 with	 IoT	 object).	 The	 process	 of	 semantic	 discovery	 and	 configuration	
enables	 to	 automatically	 introduce	 the	 set	 of	 IoT	 objects	 for	 corresponding	 VICINITY	 node.	 This	
configuration	can	be	further	manually	updated	via	Neighbourhood	manager.	Once,	the	configuration	
is	changed,	 it	 is	updated	and	shared	with	corresponding	VICINITY	agent,	responsible	for	 interaction	
with	this	IoT	object.	

VICINITY-ARCH-DD-100	 Discovery	related	functionality	

• Registration	discovery	of	IoT	objects:	automatic	and	by	request;	
• Update	of	IoT	objects	and	agent	configuration	(enable/disable	IoT	object,	enable/disable	IoT	

object	service/action,	etc.);	
• Automatic	creation	of	IoT	object	model	templates	from	specified	external	repositories	of	IoT	

object	descriptors.	

Considered	requirements:	

VICINITY-FUNC-UCR080,	VICINITY-FUNC-UCR100,	VICINITY-FUNC-UCR120,	VICINITY-FUNC-UCR160	

	

	 VICINITY	Architectural	Design	 69	

	 	

	
Public	

	

	

	

VICINITY-ARCH-DD-110	 Handling	semantic	models	

• providing	common	semantic	vocabulary	to	describe	IoT	objects;	
• performing	CRUD	operations	on	IoT	object	models	and	agent	configuration;	
• executing	semantic	queries	and	look-ups;	
• serialization	 of	 semantic	 information	 into	 common	 machine-readable	 format	 (e.g.	 JSON,	

XML).	

Considered	requirements:	

VICINITY-FUNC-UCR080,	 VICINITY-FUNC-UCR100,	 VICINITY-FUNC-UCR120,	 VICINITY-FUNC-UCR130,	
VICINITY-FUNC-UCR160	
	

 Dependencies	

Based	 on	 architectural	 design,	 this	 component	 interacts	 only	 with	 the	 Neighbourhood	 manager.	
Generally,	 any	 VICINITY	 component	 (mainly	 the	 Node	 Gateway	 API),	 may	 request	 the	 semantic	
information	via	Gateway	API	Services	and	Neighbourhood	manager.	

 Interfaces	

VICINITY-ARCH-DD-120	 Discovery	API	

• Discovery	 request:	 given	 list	 of	 IoT	 object	 meta-data	 from	 VICINITY	 agent,	 semantic	
discovery	platform	will	create	semantic	models	of	corresponding	IoT	objects,	map	them	to	
physical	IoT	objects	and	store	in	repository.	The	result	of	this	process	is	the	creation	of	TEDs	
for	provided	IoT	object	meta-data.	

• Get	 TEDs	 –	 IoT	 object	 instances:	 given	 list	 of	 IoT	 object	 identifiers,	 semantic	 discovery	
platform	will	return	the	semantic	instances	of	corresponding	IoT	objects.	

• Get	Agent	Configuration:	returns	the	actual	configuration	of	requested	agent;	

• Set	Agent	Configuration:	updates	the	actual	configuration	for	requested	agent;	

Considered	requirements:	

VICINITY-FUNC-UCR140,	VICINITY-FUNC-UCR160	
	

VICINITY-ARCH-DD-130	 Query	API	

• Execute	 Query:	 performs	 the	 semantic	 search	 by	 executing	 the	 query	 and	 returns	 the	
matches;	

Considered	requirements:	

VICINITY-FUNC-UCR160	
	

 Resources	

Semantic	discovery	&	dynamic	configuration	agent	platform	shall	manage	the	following	resource:	

	

	 VICINITY	Architectural	Design	 70	

	 	

	
Public	

	

	

• semantic	 repository	which	 is	 populated	 in	 advance	with	 semantic	meta-data	–	 the	domain	
ontologies	and	IoT	object	templates,	which	are	used	as	the	basis	for	semantic	discovery.	

Semantic	 repository	 is	 a	 semantic	 storage	 and	 reasoner	 used	 for	 manipulation	 and	 querying	 the	
semantic	data.	

Semantic	repository	is	implemented	as	high-performance	semantic	storages	available	to	scale	up	to	
billions	 of	 statements.	 These	 storages	 are	 optimized	 to	 execute	 semantic	 queries	 and	manipulate	
data	in	real-time	responses	comparable	to	performance	of	common	SQL	databases.	

	

	

VICINITY-ARCH-DD-140	 Semantic	repository	performance	

Semantic	discovery	&	dynamic	configuration	agent	platform	shall	support	high-performance	search	
and	 CRUD	 operation	 on	 semantic	 data	 to	 support	 performance	 requirements	 of	 components	
accessing	semantic	repository.	

Considered	requirements:	

VICINITY-NFUNC-PER010	
	

 Data	

IoT	 object	 models	 are	 described	 in	 more	 details	 in	 section	 4.5.2	 Semantic	 Model	 and	 Agent	
Configuration	Storage.	

 VICINITY	Gateway	API	

 Purpose	

The	goal	of	the	VICINITY	Gateway	API	is	to	enable	semantic	interoperability	within	VICINITY	Nodes	so	
that	they	can	easily	expose	their	own	IoT	objects,	as	well	as	discover	and	interact	with	any	IoT	object	
known	to	VICINITY	within	their	VICINITY	Neighbourhood.	

 Functions	

Most	functions	of	the	VICINITY	Gateway	API	can	be	directly	invoked	through	its	available	interfaces.	
However,	to	support	 incoming	P2P	communications,	there	are	additional	related	functions	that	are	
indirectly	 triggered	 by	 a	 message-queue	 consumption	 mechanism	 provided	 by	 the	 VICINITY	
Communication	Node	interface,	e.g.	receiving	a	message	that	requests	to	get	the	property	value	of	
an	exposed	IoT	object.	

For	all	those	functions	listed	below	that	involve	interaction	with	an	IoT	object,	it	is	assumed	that	they	
are	in	scope	of	VICINITY	Node’s	neighbourhood.	

VICINITY-ARCH-DD-150	 VICINITY	Gateway	API	functions	

The	VICINITY	Gateway	API	shall	support	the	following	functions	to:	

• Request	authentication	in	VICINITY;	
• Register	as	VICINITY	Gateway	API;	
• Register/Expose	new	IoT	objects	to	VICINITY	Agent/Adapter;	
• Discover	IoT	objects	that	match	a	required	search	pattern;	

	

	 VICINITY	Architectural	Design	 71	

	 	

	
Public	

	

	

• Get	the	current	value	of	a	specific	property	of	an	IoT	object;	
• Set	the	value	of	a	specific	property	of	an	IoT	object;	
• Perform	a	specific	action	on	an	IoT	object;	
• Get	the	status	of	on-going	specific	actions	on	an	IoT	object;	
• Subscribe/Unsubscribe/Listen	to	events	issued	by	an	IoT	object;	
• Get	the	 list	of	available	 interaction	patterns	 (i.e.,	properties,	actions	and	events)	of	an	 IoT	

object	along	with	each	value	constraints	and	units;	
• Get	the	value	of	a	specific	property	of	an	exposed	IoT	object;	
• Set	the	value	of	a	specific	property	of	an	exposed	IoT	object;	
• Perform	a	specific	action	on	an	exposed	IoT	object;	
• Get	the	status	of	on-going	specific	actions	on	an	exposed	IoT	object;	
• Subscribe/Unsubscribe/Listen	to	events	issued	by	exposed	IoT	object;	
• Process	configuration	updates	of	exposed	IoT	objects	from	VICINITY	Cloud;	
• Query	 the	 VICINITY	 P2P	 Network	 by	 means	 of	 a	 combination	 of	 discovery	 and	 access	

functions,	by	using	SPARQL9	and	the	VICINITY	Ontology.	

Considered	requirements:	

VICINITY-NFUNC-PRV040,	VICINITY-FUNC-UCR145	

	

 Interfaces	

To	support	 functions	 listed	 in	section	8.4.2,	 the	VICINITY	Gateway	API	shall	be	divided	 into	specific	
groups	of	sub-interfaces	for	Registry,	Discovery,	Consumption	and	Querying.	

All	interfaces	will	require	working	under	an	authentication	context	with	VICINITY.	

VICINITY-ARCH-DD-160	 VICINITY	Gateway	API	for	Registry	

The	Registry	interface	shall	support	registration	of	IoT	objects	within	a	Node	in	two	ways:	

• Aggregated	registration	of	a	set	of	IoT	objects;	
• Individual	registration	of	each	IoT	object.	

Supported	functions:	

• Register	as	VICINITY	Node;	
• Register/Expose	new	IoT	objects.	

Considered	requirements:	

VICINITY-FUNC-UCR145	

	

Individual	registrations	can	happen	at	any	time	after	the	Node	is	successfully	registered	in	VICINITY;	
it	supports	automatic	discovery	and	dynamic	integration	of	IoT	objects	in	the	network.	

When	 it	 comes	 to	 invoke	 a	 registration,	 the	 Registry	 interface	 expects	 to	 receive	 IoT	 object	
descriptions	represented	in	the	common	VICINITY	format	(see	section	8.5.6).	Internally,	the	Gateway	

																																																													
9	https://www.w3.org/TR/sparql11-query/	

	

	 VICINITY	Architectural	Design	 72	

	 	

	
Public	

	

	

API	shall	validate	the	received	descriptions	against	the	schema	before	sending	it	as	a	message	to	the	
VICINITY	Cloud	(though	the	P2P	Network).		

Once	 the	 described	 process	 is	 successfully	 completed,	 the	 Gateway	 API	 gets	 prepared	 to	
asynchronously	 receive	 feedback	 from	 the	 VICINITY	 Cloud	 (Semantic	 discovery	 &	 dynamic	
configuration	 agent	 platform,	 see	 section	 8.3)	 in	 the	 form	 of	 enriched	 versions	 of	 such	 semantic	
descriptions	 (TED).	 Such	TED	will	 provide	 the	Gateway	API	 a	 better	 knowledge	about	 its	 underling	
infrastructure	of	IoT	objects.	

VICINITY-ARCH-DD-170	 VICINITY	Gateway	API	for	Discovery	

The	Discovery	 interface	will	 allow	 to	discover	 those	 IoT	objects	 that	match	a	 fixed	 search	pattern	
within	VICINITY	Neighbourhood.	The	search	pattern	(aligned	to	the	common	VICINITY	format	for	IoT	
object	descriptions)	shall	at	least	support	the	following	criteria:	

• Type	of	IoT	object;	
• Regarding	IoT	object	properties,	

o Type;	
o Data	format;	
o Units.	

• Regarding	IoT	object	actions,	
o Type;	

• Regarding	IoT	object	events,	
o Type;	
o Throughput.	

In	order	to	support	more	expressive	search	patterns	and	take	advantage	of	the	VICINITY	Ontology,	
the	Discovery	interface	shall	optionally	support	constrained	SPARQL	queries	for	discovery	requests.	

Supported	functions:	

• Discover	IoT	objects	that	match	a	required	search	pattern.	

Considered	requirements:	

VICINITY-FUNC-UCR160	

	

Once	the	search	criteria	are	validated,	the	discovery	process	shall	continue	as	follows:	

1. Generate	 the	corresponding	SPARQL	query	 (using	 the	VICINITY	Ontology)	 to	be	sent	 to	 the	
VICINITY	Gateway	API	Services	within	the	VICINITY	Cloud.	

2. Wait	 until	 a	 response	 is	 received.	 The	 result	 shall	 be	 a	 VTED	 (Virtual	 Things	 Ecosystem	
Description)	that	contains	the	set	of	TDs	of	the	specific	IoT	objects	that	match	the	provided	
search	criteria.	

3. Transform	all	TDs	into	the	common	VICINITY	format	(see	section	8.5.6).	

The	responses	provided	by	Discovery	interface	will	consist	of	a	set	of	tuples	(built	from	output	of	step	
3	 of	 the	 discovery	 process)	 which	 identify	 the	 matching	 IoT	 objects	 by	 specifying	 identifiers	 and	
relevant	 meta-data	 so	 that	 they	 can	 be	 addressable	 afterwards,	 e.g.,	 the	 Node,	 IoT	 object	 and	
property	IDs.	

	

	

	

	 VICINITY	Architectural	Design	 73	

	 	

	
Public	

	

	

VICINITY-ARCH-DD-180	 VICINITY	Gateway	API	for	Consumption	

The	Consumption	interface	of	the	Gateway	API	aims	at:	

• Providing	 access	 methods	 to	 IoT	 objects	 that	 belong	 to	 integrated	 infrastructures	 within	
VICINITY	Neighbourhood.		

The	access	operations	offered	by	this	interface	takes	a	tuple	of	identifiers	as	input,	e.g.	one	of	the	
results	provided	by	a	Discovery	operation,	which	shall	serve	as	pointer	to	a	specific	 IoT	object	and	
even	to	one	of	its	properties,	actions	or	events.		

Supported	functions:	

• Get	the	current	value	of	a	specific	property	of	an	IoT	object;	
• Set	the	value	of	a	specific	property	of	an	IoT	object;	
• Perform	a	specific	action	on	an	IoT	object;	
• Get	the	status	of	on-going	specific	actions	on	an	IoT	object;	
• Subscribe/Unsubscribe/Listen	to	events	issued	by	an	IoT	object;	
• Get	the	 list	of	available	 interaction	patterns	 (i.e.,	properties,	actions	and	events)	of	an	 IoT	

object	along	with	each	value	constraints	and	units.	

Considered	requirements:	

VICINITY-FUNC-UCR145	

	

The	Gateway	API	 it	 leverages	 the	VICINITY	 P2P	Network	 as	 a	 distributed	 transport	mechanism	 for	
requesting	and	receiving	user	data	from	the	relevant	and	addressable	VICINITY	Node.	

Once	a	tuple	of	identifiers	is	provided,	the	following	Consumption	process	takes	place:	

1. Request	a	VTED	 (Virtual	 Things	Ecosystem	Description)	 to	 the	VICINITY	Cloud	 (if	 it	was	not	
already	cached	 in	the	Gateway	API)	 that	strictly,	semantically	and	completely	describes	the	
referenced	IoT	object.	This	VTED	should	contain	everything	that	VICINITY	knows	so	far	about	
such	IoT	object.	

2. Query	the	VTED	to:	
o Identify	the	VICINITY	Node	that	provides	secure	access	to	the	referenced	IoT	object;	
o Extract	 specific	 security	 and	 privacy	 constraints	 and	 any	 further	 meta-data	 that	 is	

required	to	establish	communication	properly.	
3. Prepare,	 serialize	and	send	a	message	 to	 the	VICINITY	Communication	Node.	This	message	

must	 unequivocally	 describe	 the	 intended	 operation	 plus	 the	 identifiers	 that	 address	 the	
interaction	 resource	 of	 the	 IoT	 object	 to	 be	 consumed.	 Due	 to	 P2P	 communications	 are	
asynchronous,	the	request	will	be	given	a	unique	identifier	so	that	its	expected	response	can	
be	correctly	identified.	

As	 a	 response	 is	 received	 through	 the	 VICINITY	 Communication	 Node,	 it	 is	 de-serialized	 and	
processed	 to	 extract	 the	 corresponding	 result	 of	 the	 operation.	When	 such	 result	 encapsulates	 a	
value	that	may	require	some	transformation,	e.g.,	unit	conversion,	the	Gateway	API	shall	optionally	
perform	it	just	before	returning	the	result.	

From	 the	 recipient	Gateway	API	 point	 of	 view,	 at	 the	 time	 a	 consumption	 request	 is	 received	 the	
following	process	is	triggered:	

1. Query	 the	 TED	 that	 describes	 the	 underlying	 IoT	 infrastructure	 (see	 Registry	 interface)	 to	
determine	 which	 are	 the	 required	 endpoints	 that	 need	 to	 be	 invoked	 to	 satisfy	 the	

	

	 VICINITY	Architectural	Design	 74	

	 	

	
Public	

	

	

consumption	request.	Such	query	shall	consider	the	identifiers	provided	in	the	request	that	
refers	to:	

o Specific	IoT	object;	
o Specific	interaction	(property,	action	or	event);	
o Required	operation	(get,	set,	subscribe,	etc.).	

2. Invoke	 the	 extracted	 endpoints	 (that	 should	 be	 offered	 by	 the	 corresponding	
Agent/Adapter).	

3. Once	 all	 endpoints’	 responses	 are	 gathered,	 the	 Gateway	 API	 shall	 process,	 unify	 and	
serialize	them	in	a	unique	message	as	response	to	the	requester.	

	

VICINITY-ARCH-DD-190	 VICINITY	Gateway	API	for	Querying	

The	goal	of	the	Querying	interface	is	to:	

• Provide	 full	 support	 to	SPARQL	queries	whose	 intention	 is	not	only	 to	discover	 things	 but	
also	to	access	and	consume	their	data	in	one-step	interaction;	

• Become	a	standard	SPARQL	endpoint	for	consuming	VICINITY	IoT	objects.	The	interface	shall	
implement	the	SPARQL	1.1	Protocol10.	

Supported	functions:	

• Query	 the	 VICINITY	 P2P	 Network	 by	 means	 of	 a	 combination	 of	 discovery	 and	 access	
functions,	by	using	SPARQL	and	the	VICINITY	Ontology.	

Considered	requirements:	

VICINITY-FUNC-UCR145,	VICINITY-FUNC-UCR160	

	

Therefore,	given	a	SPARQL	query,	the	clients	of	this	interface	will	rely	on	the	Gateway	API	to	do	the	
following:	

1. Discover	 those	 IoT	 objects	 that	 are	 relevant	 for	 the	 given	 query.	 This	 process	 shall	 be	
supported	by	 the	VICINITY	Gateway	API	 Services	 (see	 section	6.6),	 concretely	 for	providing	
the	VTED	(Virtual	Things	Ecosystem)	that	fully	describe	the	involved	things.	

2. Create	a	query	plan	that	describes	what	to	collect	and	where	from	as	well	as	how	the	query	
shall	be	evaluated	(steps	3	and	4).		

3. Collect	 all	 relevant	 information	 from	 the	 IoT	 objects	 by	 establishing	 communication	 with	
their	corresponding	VICINITY	Nodes	(as	explained	in	the	Consumption	interface	table).	

4. Evaluate	 the	 query	 against	 the	 collected	 triples	 (RDF	 graph)	 and	 generate	 the	 existing	
solutions.	

 Resources	

The	Gateway	API	shall	make	use	of	a	graph	database	(triple	store)	for	storing	and	caching	different	
semantic	data.	

	

																																																													
10	https://www.w3.org/TR/sparql11-protocol/	

	

	 VICINITY	Architectural	Design	 75	

	 	

	
Public	

	

	

VICINITY-ARCH-DD-200	 VICINITY	Gateway	API	performance	

VICINITY	Gateway	API	shall	provide	means	to	support	caching	of	the	exchanged	user	data.	

Considered	requirements:	
VICINITY-NFUNC-PER050	

	

 Data	

All	the	different	interactions	and	processes	that	take	place	within	VICINITY	Gateway	API	will	involve	
the	usage	of	two	different	kinds	of	data:	syntactic	and	semantic.		

Syntactic	 data	 refers	 to	 the	 data	which	 the	Gateway	 API	will	 exchange	with	 its	 surrounding	Node	
components;	 simple	 schema-based	 information	 that	 is	 not	 semantically	 described,	 thus	 allowing	
these	data	exchanges	to	be	agnostic	of	semantics	defined	in	the	VICINITY	Ontology.	

• Syntactic	data	
o IoT	object	descriptions	in	VICINITY	common	format	(see	section	6.5);	
o VICINITY	P2P	network	messages	(see	section	6.2.2).	

Semantic	data	represents	all	data	that	is	described	using	the	VICINITY	Ontology.	

• Semantic	data	
o Thing	Descriptions	(TD)	of	IoT	objects;	
o Things	Ecosystem	Description	(TED)	of	the	underlying	IoT	infrastructure;	
o Virtual	TED	for	discovery	processes	and	querying	requests.	

 VICINITY	Agent	/	Adapter	

 Purpose	

The	main	goal	of	VICINITY	Agent	is	to	provide	access	to	IoT	objects	of	underlying	infrastructure	(e.g.	
specific	middleware)	or	value-added	services	in	uniform	way.	

 Function	

The	main	 functionality	of	VICINITY	Agent	 is	 to	 integrate	existing	 solution,	which	provides	access	 to	
IoT	 objects	 (specific	 middleware,	 application,	 value-added	 services),	 into	 VICINITY.	 The	 role	 of	
VICINITY	Agent	is	to	map	all	IoT	objects	available	via	underlying	infrastructure	into	common	VICINITY	
form,	to	enable	uniform	access	to	all	integrated	infrastructures.	

The	most	important	part	of	VICINITY	Agent	is	the	VICINITY	Adapter	subcomponent.	Adapter	serves	as	
the	 proxy	 between	 common	 VICINITY	 services	 and	 underlying	 infrastructure.	 For	 each	 specific	
infrastructure	to	be	integrated,	there	must	exist	specific	VICINITY	Adapter.	The	role	of	Adapter	is	to	
translate	 VICINITY	 services	 into	 infrastructure	 specific	 services.	 VICINITY	 Adapter	 provides	 the	 API,	
which	must	be	implemented,	when	integrating	new	infrastructure.	

	

	

	

	

	

	 VICINITY	Architectural	Design	 76	

	 	

	
Public	

	

	

VICINITY-ARCH-DD-210	 Adapter	functionality	

Adapter	must	be	able	to:		

• Read	descriptions	of	included	IoT	objects	and	translate	it	into	common	VICINITY	format.	
Acquired	descriptors	are	used	for	automatic	discovery,	creating	corresponding	semantic	
models	of	 IoT	objects	and	mapping	between	semantic	models	and	physical	 IoT	objects	
in	infrastructure.		

• Interact	 with	 specific	 IoT	 objects	 in	 infrastructure:	 read/write	 data	 from	 specific	 IoT	
object	service	or	perform	actions.	

Considered	requirements:	

VICINITY-FUNC-UCR145	
	

VICINITY-ARCH-DD-220	 Agent	functionality	

The	VICINITY	Agent	 is	 the	 logical	 component	using	assigned	Adapter	 to	perform	VICINITY	services	
for	interaction	with	underlying	IoT	objects.		
The	main	functionalities	of	VICINITY	Agent	are:		

• To	discover	and	register	IoT	objects	in	underlying	architecture:	All	available	descriptions	
of	IoT	objects	are	mapped	into	VICINITY	semantic	representation.	IoT	objects	discovery	
can	 be	 performed	 by	 request,	 by	 it	 can	 be	 performed	 also	 automatically,	 when	 the	
VICINITY	node	is	first	time	introduced	into	platform;	

• To	 interact	 with	 IoT	 objects:	 Given	 identifier	 of	 IoT	 objects	 and	 its	 service,	 the	
read/write	data	operations	 can	be	performed	by	processing	get/set	property,	execute	
action	or	read	event	services.	Data	services	may	be	further	parametrized,	 for	example	
by	adding	time	interval,	ordering	and	number	of	results	request;	

• To	simulate	supported	type	of	IoT	objects	from	neighbourhood	in	underlying	integrated	
infrastructure;	

• To	actualize	Agent	configuration	updated	via	Neighbourhood	manager.	

Considered	requirements:	

VICINITY-FUNC-UCR145	
	

 Dependencies	

Based	on	architectural	design,	this	component	interacts	only	with	the	Gateway	API.	

 Interfaces	

Execution	of	all	interface	services	always	considers	the	actual	configuration	of	Agent.	

VICINITY-ARCH-DD-230	 Adapter	API	

• Expose	IoT	objects:	returns	the	list	of	available	IoT	object	meta-data	(to	be	discovered)	in	
common	VICINITY	format.	

• Execute	Request:	given	identifier	of	IoT	object	and	its	service	(optionally	with	additional	
parameters),	the	corresponding	service	of	underlying	infrastructure	is	executed	and	results	
are	returned.	The	VICINITY	get/set	property,	perform	action	or	read	event	services	are	
translated	info	form	of	underlying	infrastructure.	

	

	 VICINITY	Architectural	Design	 77	

	 	

	
Public	

	

	

Considered	requirements:	

VICINITY-FUNC-UCR145,	VICINITY-FUNC-UCR100,	VICINITY-FUNC-UCR110,	VICINITY-FUNC-UCR130	
	

VICINITY-ARCH-DD-240	 Agent	API	

• Discovery	Request:	all	IoT	objects	in	underlying	infrastructure	are	passed	into	semantic	
discovery	component	and	registration/discovery	is	performed	

• Get/Set	property,	perform	action,	read	event:	IoT	object	interaction	services	
• Update	configuration:	the	configuration	is	updated	

Considered	requirements:	

VICINITY-FUNC-UCR145,	VICINITY-FUNC-UCR160,	VICINITY-FUNC-UCR140,	VICINITY-FUNC-UCR145	
	

 Resources	

VICINITY	Agent	and	Adapter	operate	above	the	existing	infrastructure	of	IoT	objects.	

 Data	

• IoT	object	descriptions	 in	VICINITY	common	format	provided	by	Adapter:	used	 in	discovery	
and	registration	process;	

• The	result	of	IoT	object	interactions:	read	data	results	or	operation	success,	both	provided	in	
common	VICINITY	format;	

 VICINITY	Gateway	API	Services	

 Purpose	

The	goal	of	the	VICINITY	Gateway	API	Services	is	to	support	discovery	in	VICINITY,	being	the	VICINITY	
Cloud	entry	point	for	the	P2P	Network	that	treats	all	incoming	discovery	requests.	

 Functions	

All	 functions	described	below	shall	 only	be	 invoked	 through	 the	VICINITY	P2P	Network.	 Thus,	 they	
will	only	work	for	authenticated	VICINITY	Nodes	in	a	secure	communication	context.	

VICINITY-ARCH-DD-250	 VICINITY	Gateway	API	Services’	functions	

The	VICINITY	Gateway	API	Services	shall	support	the	following	functions	to:	

• Generate	semantic	descriptions	of	things’	ecosystems	(Virtual	Things	Ecosystem	Description	
-	VTED)	that	are	relevant	for	discovery	requests;	

• Generate	discovery	and	consumption	plans	 (query	plans)	 for	queries	 issued	 from	VICINITY	
Nodes.	

Considered	requirements:	

VICINITY-FUNC-UCR080,	VICINITY-FUNC-UCR120,	VICINITY-FUNC-UCR145	

	

	 VICINITY	Architectural	Design	 78	

	 	

	
Public	

	

	

 Dependencies	

In	 order	 to	 correctly	 perform	 its	 task,	 the	 Gateway	 API	 Services	 shall	 only	 require	 the	 VICINITY	
Neighbourhood	 Manager	 to	 be	 available.	 The	 VNM	 will	 be	 required	 to	 discover	 relevant	 and	
accessible	(within	Neighbourhood)	IoT	objects	for	both	discovery	and	querying	requests.	

 Interfaces	

The	VICINITY	Gateway	API	Services	shall	define	a	dedicated	interface	per	each	function	described	in	
section	6.6.2,	namely	the	Discovery	and	Querying	interfaces.	

VICINITY-ARCH-DD-260	 VICINITY	Gateway	API	Services	for	Discovery	

The	Discovery	interface	will	have	a	very	concrete	purpose:	to	provide	the	VTED	that	describes	so	far,	
the	set	of	things	that	matches	a	search	criteria	given	in	the	form	of	a	constrained	SPARQL	query.	The	
Gateway	APIs	will	be	the	actual	clients	of	this	interface,	thus	responsible	for	creating	and	issuing	the	
corresponding	query	(see	section	6.4.3).	

The	supported	SPARQL	queries	are	those	whose	pattern	only	refers	to	concepts	and	properties	that	
are	in	scope	of	the	semantics	of	search	patterns	defined	in	section	6.4.3,	i.e.,	only	IoT	object	meta-
data	will	be	involved.	

Clients	 of	 the	 Discovery	 interface	 shall	 not	 be	 returned	 with	 the	 intuitive	 result	 of	 the	 query	
evaluation	 (set	of	 solutions	 as	 tuples),	 but	 a	 graph	 (semantic	data)	 that	describes	everything	 that	
VICINITY	knows	about	all	involved	IoT	objects	(VTED).	

Supported	functions:	

• Generate	semantic	descriptions	of	things’	ecosystems	(Virtual	Things	Ecosystem	Description	
-	VTED)	that	are	relevant	for	discovery	requests.	

Considered	requirements:	

VICINITY-FUNC-UCR080,	VICINITY-FUNC-UCR120,	VICINITY-FUNC-UCR145	

	

VICINITY-ARCH-DD-270	 VICINITY	Gateway	API	Services	for	Querying	

The	Querying	interface	can	be	considered	as	an	extension	of	the	Discovery	interface.	Its	purpose	is	
to	support	SPARQL	queries	that	uses	the	VICINITY	Ontology	not	only	for	discovery	purposes	but	also	
for	consumption.	

Its	main	purpose	 is	 to	reduce	the	workload	of	Gateway	APIs,	specifically	 to	their	querying	process	
(see	Gateway	API	for	Querying	in	section	6.4.3).		

Supported	functions:	

• Generate	discovery	and	consumption	plans	 (query	plans)	 for	queries	 issued	 from	VICINITY	
Nodes.	

Considered	requirements:	

VICINITY-FUNC-UCR080,	VICINITY-FUNC-UCR120,	VICINITY-FUNC-UCR145	

	

From	 the	Gateway	 APIs	 point	 of	 view,	 they	will	 receive	 a	 query	 plan	 that	will	 prevent	 them	 from	
having	to:	

	

	 VICINITY	Architectural	Design	 79	

	 	

	
Public	

	

	

1. Prepare	 a	 constrained	 SPARQL	 query	 from	 the	 given	 one,	 just	 to	 discover	 the	 things	 that	
may	be	relevant	to	obtain	results.	

2. Process	 and	 analyse	 the	 result	 of	 a	 discovery	 request	 for	 such	 constrained	 SPARQL	 query	
(VTED)	 to	 identify	 all	 IoT	objects	 and	 their	 access	 configuration	 (address,	 security	 aspects,	
endpoints,	etc.)	

3. Finally,	create	a	query	plan	themselves.	

Therefore,	 those	 lightweight	 Gateway	 APIs	 that	 rely	 on	 this	 interface	 shall	 have	 just	 to	 follow	
straightforwardly	the	provided	query	plan	for	a	given	SPARQL	query.	

	

 Resources	

The	Gateway	API	Services	shall	make	use	of	a	graph	database	 (triple	store)	 for	storing	and	caching	
different	semantic	data.	

 Data	

Both	 discovery	 and	 querying	 processes	 work	 with	 semantic	 data	 (TD,	 VTED)	 and	 the	 VICINITY	
Ontology.	

	

	 VICINITY	Architectural	Design	 80	

	 	

	
Public	

	

	

 Quality	considerations	
The	 section	 deal	 with	 quality	 considerations	 in	 VICINITY	 architecture.	 It	 focuses	 on	 the	 following	
quality	issues:	

• Usability,	
• Reliability,	
• Scalability	and	Performance,	
• Maintenance,	
• Security	&	Privacy.	

 Usability	
Localization:	 user	 interface	 provided	 by	 VICINITY	 components	 (such	 as	 VICINITY	 Neighbourhood	
Manager)	 shall	 provide	 tools	 to	 support	 localization	 of	 text,	 navigation,	 date,	 time	 and	 currency	
through	 ICU	 (International	Components	 for	Unicode)	 standards.	 Localized	messages	and	 formatted	
texts	 shall	 not	 be	 integral	 part	 of	 VICINITY	 components’	 source	 code	 (“hard	 coded”)	 and	 shall	 be	
configurable	separately.	

Accessibility:	user	interface	provided	by	VICINITY	components	shall	support	different	type	of	devices	
such	as	desktop	screens,	laptops,	tables	and	smart	phone	through	user	interface	responsive	design.	

User	 interface	 shall	 provide	 layer	 of	 technical	 services	 (user	 interface	 service	 layer)	 which	 can	 be	
used	by	current	or	future	devices	(wearables,	smart	watches,	augmented	reality	devices)	and	custom	
application	to	facilitate	users’	interaction	with	VICINITY.	

Responsiveness	 of	 user	 interface:	user	 interface	 shall	 react	 to	users	 requests	without	 causing	any	
discomfort	to	user.	Activities	with	longer	processing	time	shall	provide	“progress	bar	or	waiting	icon”	
for	users.	User	interface	service	layer	shall	provide	status	for	long	process	time	activities.	

 Reliability	

 Availability	

Availability	 of	 VICINITY	 Cloud	 components	 provide	 common	 interoperability	 services	 for	 the	
integrated	 infrastructures	 and	 value-added	 services	 deployed	 on	 high-availability	 platform	 (see	
Section	7).	High-availability	platform	shall	support	availability	on	hardware	layer	(for	software	layer	
see	scalability	section	9.3)	including:	

• Redundant	internet	connections	to	protect	infrastructure	from	loosing	of	connectivity,	
• Infrastructure	layer	protection	against	DDoS	attacks	to	protect	services	from	overloading,	
• RAID	support	for	data	storages	to	support	protection	against	storage	hardware	failure,	
• Operating	 system	 virtualized	 environment	 to	 protect	 running	 components	 from	 failure	 of	

underlying	physical	 infrastructure	and	optimize	available	resources	(CPU,	RAM	and	HDD	for	
operating	systems),	

• Support	 of	 infrastructure	 load	 balancing	 to	 protect	 components	 from	 overloading	 of	
underlying	physical	infrastructure.	

Availability	of	VICINITY	Node	components	are	deployed	in	integrated	infrastructures	and	thus	their	
availability	is	directly	influenced	by	the	availability	of	underlying	hardware	infrastructure.		

VICINITY	Cloud	and	Node	components	shall	 respect	 independence	 from	physical	 infrastructure	and	
lifecycle	of	operating	system	maintenance	(such	as	restart,	migration	within	virtualized	environment	

	

	 VICINITY	Architectural	Design	 81	

	 	

	
Public	

	

	

etc.).	Components	shall	provide	means	to	support	health-check	mechanism	of	its	services’	aliveness	
and	 functioning	 (9.4).	 Components	 shall	 provide	 means	 to	 support	 secure	 runtime	 upgrades	 of	
components,	 however	 VICINITY	 user	 or	 administrator	 shall	 be	 notified	 through	 user	 interface	 if	
physical	intervention	is	necessary.	

 Fault	tolerance	

Fault	 tolerance	 against	 VICINITY	 Communication	 Server	 is	 critical	while	 the	 server	 manages	 P2P	
network	 and	 facilitates	 all	 communications	 between	 VICINITY	 Cloud	 components	 and	 VICINITY	
Nodes.	 Unavailable	 VICINITY	 Communication	 Server	 will	 suspend	 any	 communication	 between	
VICINITY	Nodes.	VICINITY	Nodes	and	shall	be	able	to	securely	reconnect	to	VICINITY	Communication	
Server	once	available.	While	VICINITY	Communication	Server	is	unavailable:	

• VICINITY	Neighbourhood	manager	shall	buffer	any	VICINITY	Configuration	changes;	
• VICINITY	 Nodes	 shall	 buffer	 any	 P2P	messages	 or	 refuse	 any	 request	 on	 the	 gateway	 API	

interface	with	an	appropriate	status	code.	

Fault	tolerance	against	VICINITY	Node	components	–	failure	of	VICINITY	Node	might	have	influence	
on	 VICINITY	 Cloud	 components	 and	 another	 VICINITY	 Nodes.	 VICINITY	 Node	 and	 Communication	
server	 are	 aware	 of	 availability11	of	 any	 VICINITY	 Node	 in	 P2P	 network,	 thus	 they	 shall	 decide	
whether	 to	 send	 messages	 to	 the	 unavailable	 node.	 P2P	 messages	 already	 sent	 to	 unavailable	
VICINITY	Nodes	shall	be	buffered	in	the	VICINITY	Communication	Server’s	P2P	Network	manager	for	
later	delivery.	

Fault	 tolerance	 against	 VICINITY	 Neighbourhood	 manager	 –	 failure	 of	 VICINITY	 Neighbourhood	
Manager	results	in	unavailability	of	VICINITY	User	interfaces,	i.e.	it	will	not	be	possible	to	perform	any	
configuration	change	in	vicinity	neighbourhood	and	discovery	and	query	service	in	open	gateway	API.	
User	data	exchange	within	P2P	network	 is	 constrained	by	unavailability	 to	perform	any	changes	 in	
existing	VICINITY	Configuration	and	sharing	access	rules.	

Fault	 tolerance	against	 integrated	 infrastructures	 services	–	assuming	VICINITY	Node	components	
are	 alive	 and	 functioning,	 the	 node	 (VICINITY	 Agent	 or	 Adapter)	 shall	 resolve	 any	 request	 for	
interaction	with	(temporary	or	permanent)	unavailable	IoT	object	by	an	appropriate	status	codes.	

Fault	 tolerance	 against	 Semantic	 platform	 –	 unavailability	 of	 semantic	 platform	 constraints	
discovery	 and	 query	 services	 of	 VICINITY	 Gateway	 API.	 VICINITY	 Neighbourhood	 Manager	 shall	
resend	 any	 request	 to	 Semantic	 platform	 once	 available	 to	 complete	 IoT	 objects	 registration	 and	
discovery	search	requests.	While	configuration	of	the	semantic	interoperability	is	distributed	among	
VICINITY	 Nodes,	 user	 data	 exchange	 between	 nodes	 is	 constrained	 by	 missing	 latest	 updates	 in	
semantic	model	and	data.	

Fault	tolerance	against	VICINITY	Gateway	API	Services	–	unavailable	VICINITY	Gateway	API	Services	
temporarily	constraints	discovery	and	querying	services	of	VICINITY	Gateway	API	only,	these	services	
shall	return	an	appropriate	status	codes.	

																																																													
11	visibility	of	VICINITY	Node	availability	is	subject	of	security	imposed	by	sharing	access	rules.	

	

	 VICINITY	Architectural	Design	 82	

	 	

	
Public	

	

	

 Scalability	&	Performance	

 Latency	

Latency	 of	 exchanged	 user	 data:	 requirements	 for	 latency	 of	 exchanged	 user	 data	 varies	 from	
application	 to	 application.	 Latency	 cannot	 be	 lower	 that	 latency	 introduced	 by	 integrated	
infrastructure,	 thus	 VICINITY	 should	 focus	 on	 minimisation	 of	 additional	 latency	 in	 VICNITY	 Node	
components	such	as	VICINITY	Open	Gateway	API,	VICINITY	Communication	Node	and	VICINITY	Peer-
to-Peer	network.	

VICINITY	Open	Gateway	API	provides	interoperability	services	with	different	complexity	(8.4.3)	from	
Consuming	 services	with	 lowest	 latency	 up	 to	 semantic	 discovery	 and	 querying	 services	with	 high	
complexity	 and	 highest	 latency.	 VICINITY	 Adapter	 can	 choose	 a	 set	 of	 services	 to	 use	 based	 on	
latency	requirements.	

VICINITY	Communication	Node	pre-processes	exchanged	user	data	with	privacy	 filtering	or	end-to-
end	 security,	 these	 privacy	 and	 security	 services	 add	 another	 latency	 in	 the	 communication.	
However,	these	features	may	be	bypassed	by	configuration	in	IoT	object	description.	

VICINITY	 Peer-to-peer	 network	 shall	 be	 built	 on	 implementation	 of	 XMPP	 protocol	 which	 enables	
near	 to	 real-time	 message	 exchange	 between	 nodes.	 In	 certain	 cases,	 it	 is	 possible	 to	 prioritize	
exchanged	messages	to	suite	needs	of	application.	

 Capacity	

Throughout	architecture	design	of	VICINITY,	the	following	capacity	issues	have	been	identified,	these	
capacity	 issues	will	be	addressed	 in	 following	scalability	 section.	Users	and	 IoT	objects	growth	 rate	
influences	 the	 size	 and	 the	 complexity	 of	 the	 semantic	 model,	 semantic	 data	 storage	 (4.3.2)	 and	
global	 neighbourhood	 storage	 (4.3.1)	 which	 might	 constraint	 comfortability	 of	 VICINITY	 usage,	
performance	of	discovery	queries,	raise	of	user	data	exchange	rate.	

 Scalability	

Scalability	of	VICINITY	Cloud	components:	as	described	in	deployment	view	(Section	7.1)	all	VICINITY	
Cloud	 components	 are	 deployed	 on	 high-availability	 platform.	 High-availability	 platform	 will	 deal	
with	 vertical	 scalability	 of	 the	 components	 (such	 as	 assigning	 necessary	 CPU,	 RAM	 and	 HDD)	 and	
hardware/	 infrastructure	 level	 failovers.	 However,	 VICINITY	 Cloud	 components	 shall	 support	 a	
horizontal	 scalability	on	different	 layers	 (data	 storage	 clusters,	 application	 server	 farm,	web	 server	
farm,	etc.),	 i.e.	provided	 their	 services	across	multiple	machines	 in	parallel,	being	able	 to	 response	
even	high	computation	volumes	and	 storage	 loads	and	 response	 to	VICINITY	users	and	 IoT	objects	
growth	rate.	

Geographical	distribution	of	Peer-to-Peer	network:	the	nature	of	the	P2P	network	is	its	geographical	
distribution	 according	 to	 geographical	 distribution	 of	 the	 peers	 –	 VICINITY	 Nodes.	 Thus,	 the	
computation	 volumes	 performed	 by	 peers	 is	 distributed	 and	 not	 concentrated	 in	 one	 location.	
Moreover,	P2P	network	is	loosely	coupled	thus	overloading	one	node	influence	indirectly	only	nodes	
with	 active	 communication.	 Note	 that,	 high	 user	 data	 exchange	 rate	 in	 P2P	 network	 can	 result	 in	
higher	load	of	on	P2P	network	manager	component	(8.2.1),	this	issue	shall	be	addressed	by	multiple	
instances	of	the	manager	geographically	distributed	according	to	P2P	network	load.	

 Maintenance	
Configuration	 of	 VICINITY	 components:	 configuration	of	 static	 and	behavioural	 properties	of	 each	
component	 is	 necessary	 to	 customize	 components	 to	 changes	 of	 their	 environment	 (such	 as	

	

	 VICINITY	Architectural	Design	 83	

	 	

	
Public	

	

	

communication	 interfaces	 configuration,	 logging	 mechanism,	 etc.).	 Each	 component	 shall	 include	
configuration	 separated	 from	 compiled	 and	 linked	 source	 code.	 Configuration	 parameters	 can	 be	
online	 and	 offline.	 Online	 configuration	 parameters	 can	 be	 changed	 without	 restarting	 of	
component.	 Offline	 needs	 restart	 of	 the	 component.	 VICINITY	 Node	 components	 shall	 promote	
online	configuration	parameters	over	offline.	Important	configuration	changes	with	potential	impact	
on	security	and	privacy	should	be	approved	by	VICINITY	User	(see	processes	in	5.1.1,	5.1.2,	5.1.3).	

Installability	of	VICINITY	Node	components:	VICINITY	Node	components	shall	support	deployment	in	
different	environments	(7.2),	thus	VICINITY	Node	components	should	use	technology	which	supports	
different	 type	 of	 software	 packaging	 (such	 as	WAR	 file	 for	 java	 based	 application	 servers,	 Docker	
container	for	Microsoft	Azure	or	Amazon	AWS,	OS	virtual	machines).	

Monitoring	 of	 VICINITY	 components:	 to	 keep	 VICINITY	 components	 running	 for	 long	 time	 in	 the	
production	 it	 is	 important	 to	 monitor	 hardware	 resources	 allocation	 and	 VICINITY	 components	
performance	behaviour.	Selected	technology	used	in	VICINITY	components	shall	support	monitoring	
of	 these	 resources	 through	 standard	 protocols	 and	 frameworks	 (such	 as	 SNMP,	 JMX,	 etc.),	 thus	
industry	 standard	 DEVOPS	 monitoring	 tools	 like	 Nagios	 or	 Microsoft	 System	 Center	 can	 be	 used.	
While	 VICINITY	 Nodes	 components	 might	 be	 unreachable	 by	 DEVOPS	 monitoring	 tools,	 logging	
mechanism	shall	be	implemented	to	collect	logs.	

 Security	&	Privacy	
Security	 architecture	 of	 the	 VICINITY	 platform	 will	 define	 the	 security	 services	 and	 mechanisms	
enabling	 those	 services	 to	 run	 and	 provide	 the	 necessary	 protection	 and	 safe	 operation	 of	 the	
platform	 in	 the	 security	 context	 of	 VICINITY	 (Figure	 34).	 This	 document	 gives	 an	 overview	 of	 the	
enabling	security	services	of	the	planned	architectural	model	and	the	enabling	security	mechanisms.	

	
Figure 34 Security context of VICINITY

The	 security	 context	 of	 VICINITY	 Solutions	 focuses	 on	 VICINITY	 Cloud	 components,	 security	 of	
VICINITY	 P2P	 Network	 and	 VICINITY	 Node	 components	 including	 VICINITY	 Communication	 Node,	
VICINITY	 Gateway	 API	 and	 VICINITY	 Agent.	 The	 security	 service	 considers	 of	 IoT	 integrated	
infrastructures,	 proximity	 network,	 and	 devices	 indirectly	 through	 VICINITY	 Agent	 and	 VICINITY	
Gateway	API	in	situation	where	they	can	pose	relevant	security	risk.	

	

	 VICINITY	Architectural	Design	 84	

	 	

	
Public	

	

	

The	selected	set	of	services	proposed	comes	from	best	practices	and	is	adapted	to	the	requirements	
set	within	 the	VICINITY	 project.	 However,	 the	 final	 selection	 of	 the	 security	 component	 should	 be	
based	 on	 the	 requirements	 and	 the	 VICINITY	 solution	 implemented	 procedures	 for	 information	
exchange.	The	final	selection	and	the	security	components	will	be	provided	in	D4.3	VICINITY	Security	
service	of	WP4.	

The	security	architectural	model	with	suggested	security	components	is	illustrated	in	Figure	35.	The	
security	 services	 are	 implemented	 through	 the	 security	 mechanism.	 This	 mechanism	 implies	
selection	 of	 the	 logical	 security	 architectures	 and	 provision	 technology	 solutions	 and	 standards.	
Selection	of	the	mechanism	and	provision	of	technology	solutions	and	standards	will	be	part	of	the	
security	service	implementation	Task	4.3.	

	

Figure 35 Security architecture
The	security	services	can	be	mapped	to	AIOTI	WG0412	security	policy	recommendations	as	follows:	

Table 16 VICINITY Security features mapped to AIOTI recommendations

AIOTI	 WG04	 Security	 policy	
recommendation	

VICINITY	Position`	

Embed	 ‘safe	 and	 secure	 software’	
design	 and	 development	
methodologies	 across	 all	 levels	 of	
device/	 application	 design	 and	
development	 and	 implement	
security	 into	 that	 life	 cycle	 at	 the	
same	time.		

VICINITY	 security	 has	 been	 analysed	 from	 technical	
specification	(D1.5)	and	architecture	design	(9.5)	point	of	view.	
Set	 of	 security	 requirements	 and	 security	 service	 has	 been	
identified	 and	 will	 be	 implemented	 in	 the	 WP4	 –	 Task	 4.3,	
security	will	be	evaluated	in	WP6	–	Task	6.4.	

Design,	 deliver	 and	 operate	 VICINITY	shall	provide	following	adaptive	and	dynamic	end-to-

																																																													
12	www.aioti.org/wp-content/uploads/2016/10/AIOTIWG04Report2015.pdf		

	

	 VICINITY	Architectural	Design	 85	

	 	

	
Public	

	

	

AIOTI	 WG04	 Security	 policy	
recommendation	

VICINITY	Position`	

adaptive	 and	 dynamic	 end–to-end	
security	 over	heterogeneous	
infrastructures	 integrating	 IoT,	
networks	 and	 cloud	
infrastructures.	 We	 recommend	
underlying	 standardised	 OS	 and	
hardware	 security	 features	 where	
architecture	 permits.	 The	
deployment	 should	not	be	 specific	
or	 propose	 a	 modification	 of	
existing	 OS	 and	 hardware	 already	
integrated	by	IoT.	

end	security	features:	

• controlling	 access	 to	 share	 objects	 (devices,	 value-
added	 services)	within	 VICINITY	 through	 sharing	 rules	
in	virtual	neighbourhood	(D1.5	–	UC0100,	3.1.1,	5.1.2);	

• notification	and	approval	mechanism	for	any	important	
change	 in	 virtual	 neighbourhood	 such	 as	 devices	
registration,	 request	 for	 data	 sharing	 (D1.5	 –	 UC	
NTF010,	5.1.2);	

• adaptation	 to	 heterogeneous	 security	 features	 in	
infrastructures	through	agents	and	adapters.	

Develop	 best	 practices	 confirming	
minimum	 requirements	 for	
provision	of	secure,	encrypted	and	
integrity-protected	 channel,	
mutual	 authentication	 processes	
between	 devices	 and	 measures	
securing	 that	 only	 authorised	
agents	 can	 change	 settings	 on	
communication	and	functionality.	

VICINITY	shall	provides	set	of	state	of	the	art	security	services	
with	ensures:	

• end-to-end	 encryption	 and	 data	 integrity	 services	 of	
exchanging	 of	 the	 user-data	 between	 integrated	
infrastructure	(9.5.1.6,	9.5.1.8);	

• verification	and	credential	management	of	the	devices,	
application	 and	 VICINITY	 users	 identities	 (9.5.1.1,	
9.5.1.2);	

• secure	 communication	 channel	 between	 VICINITY	
components	and	environment;	

Develop	a	‘New	identity	for	Things’	
–	 To	 date,	 Identity	 and	 Access	
Management	 (IAM)	 processes	 and	
infrastructure	 have	 been	 primarily	
focused	on	managing	the	identities	
of	 people.	 IAM	 processes	 and	
infrastructure	 must	 now	 be	 re-
envisioned	 to	 encompass	 the	
amazing	 variety	 of	 the	 virtualized	
infrastructure	 components.	 For	
example,	 authentication	 and	
authorization	 functions	 will	 be	
expanded	 and	 enhanced	 to	
address	 people,	 software	 and	
devices	 as	 a	 single	 converged	
framework.	

VICINITY	will	 rely	 on	 existing	 identity	management	 of	 devices	
of	 integrated	 infrastructures	 and	 their	 adaptation	 through	
adapters	 and	 agents	 supported	by	 interoperability	 services	 of	
VICINITY	Gateway	API	(3.3).		

	

Develop	a	Common	Authentication	
architecture	 –	 WG4	 recommends	
investigation	 of	 a	 Secure	 Identity	
and	 Trusted	 Authentication	
mechanism,	for	example	one	which	
takes	 into	 account	 different	

VICINITY	 shall	 rely	 on	 current	 authentication	 of	 value	 added	
services	 and	 services	 of	 integrated	 infrastructure	 through	
VICINITY	 Adapters	 on	 VICINITY	 Gateway	 API	 (9.5.1.1,	 9.5.1.2,	
9.5.1.3).	

	

	 VICINITY	Architectural	Design	 86	

	 	

	
Public	

	

	

AIOTI	 WG04	 Security	 policy	
recommendation	

VICINITY	Position`	

authentication	 standards	 and	 will	
provide	 a	 single-sign-on	 solution	
for	 IoT	 applications	 moving	
between	different	systems.	

Certification	 –	 the	 certification	
framework	 and	 self-certification	
solutions	 for	 IoT	 applications	 have	
not	 been	 developed	 yet.	 The	
challenge	 will	 be	 to	 have	 generic	
and	 common	 framework,	 while	
developing	 business	 specific	
provisions.	 This	 framework	 should	
provide	evaluation	assurance	levels	
similar	 to	 the	Common	Criteria	 for	
Information	 Technology	 Security	
Evaluation	 (IS0/IEC	 15408),	 which	
should	serve	as	the	reference.	

VICINITY	 shall	 rely	 on	 device,	 value-added	 services	 and	
organization	profiles	including	information	about	device,	value-
added	 services	 and	organization.	 These	profiles	might	 include	
security	and	privacy	 claims	provided	by	device	owner,	 service	
provider	 and	 organization.	 Profiles	 are	 accessible	 thorough	
VICINITY	 Neighbourhood	 manager	 and	 can	 be	 used	 during	
evaluation	vicinity	neighbourhood	sharing	rules.	

	

The	 privacy	 concepts	 introduced	 in	 VICINITY	 can	 be	 mapped	 to	 AIOTI	 WG04 13 	privacy	
recommendations	as	follows:	

Table 17 VICINITY Privacy features mapped to AIOTI recommendations

AIOTI	 WG04	 Privacy	
recommendation	

VICINITY	Position`	

Privacy	Impact	Assessments	should	
be	 performed	 before	 any	 new	 IoT	
applications	are	launched.	

VICINITY	 shall	 rely	 on	 Privacy	 Impact	 Assessments	 of	
organization	and	service	provided.	Result	of	the	privacy	impact	
shall	be	included	in	organization	and	service	profiles.	

Stakeholders	must	delete	raw	data	
as	soon	as	they	have	extracted	the	
data	 required	 for	 their	 data	
processing.	

VICINITY	 shall	 not	 store	 any	 user	 data	 from	 integrated	
infrastructure,	 devices	 and	 service.	 VICINITY	 only	 facilitates	
exchange	 of	 the	 user	 data.	 Any	 private	 data	 stored	 in	 user,	
organization,	 device	 and	 service	 profiles	 can	 be	 updated	 by	
user	 and	 removed	 when	 not	 used	 any	 more	 if	 possible14	
(device	removed,	service	removed,	user	sign	out,	organization	
sign	out).	

Every	IoT	stakeholder	should	apply	
the	principles	of	Privacy	by	Design.	

VICINITY	privacy	has	been	analysed	from	technical	specification	
(D1.5)	 and	 architecture	 design	 (9.5)	 point	 of	 view.	 Set	 of	

																																																													
13	www.aioti.org/wp-content/uploads/2016/10/AIOTIWG04Report2015.pdf		
14	legal	and	security	measures	can	prevent	to	remove	a	private	data	if	not	actively	used	any	more.	

	

	 VICINITY	Architectural	Design	 87	

	 	

	
Public	

	

	

AIOTI	 WG04	 Privacy	
recommendation	

VICINITY	Position`	

privacy	 requirements	 and	 privacy	 functions	 (mostly	 derived	
from	GDPR15)	 has	been	 identified	and	will	 be	 implemented	 in	
the	WP3	 –	 Task	 3.1,	 privacy	will	 be	 evaluated	 in	WP6	 –	 Task	
6.4.	

Data	 subjects	 and	 users	 must	 be	
able	to	exercise	their	rights	and	be	
“in	 control”	 of	 their	 data	 at	 any	
time.	

VICINITY	enables	VICINITY	user	to	revoke	access	to	device	and	
services	 at	 any	 time	 using	 VICINITY	 Neighbourhood	 manager	
(D1.5	–	UC	0100).	

The	 methods	 for	 giving	
information,	 offering	 a	 right	 to	
refuse	 consent	 should	be	made	as	
user-friendly	as	possible.	

VICINITY	 shall	 provide	 features	 to	 manage	 private	 data	
processing	 consent	 for	 device	 and	 service	 in	 VICINITY	
Neighbourhood	Manager	(D1.5	–	UC	PRV000).	

Devices	 and	 applications	 should	
also	 be	 designed	 so	 as	 to	 inform	
users	and	non-user	data-subjects.	

VICINITY	 shall	 notify	 by	 VICINITY	 user	 (device	 owner,	 service	
provider,	IoT	operator)	about	any	important	changes	or	action	
required	 (accepting	 access	 to	 device	 or	 service)	 (D1.5	 –	 UC	
NTF010).	

	

 Enabling	security	services	and	mechanism	

This	section	list	the	following	potential	security	services	as	part	of	the	VICINITY	architecture:	

• Credential	Management;	
• Authentication;	
• Access	Control;	
• Privilege	Management;	
• Audit	Trails;	
• Data	Integrity;	
• Data	Confidentiality;	
• Secure	Communication	Channel;	
• Accountability;	
• Non-Repudiation;	
• Confirmation	of	Receipt.	

The	set	of	security	services	and	their	security	mechanism	is	not	final	and	will	be	adjusted	throughout	
of	the	life	cycle	project	and	VICINITY	solution	based	on	project	progress	and	needs.	

Within	 each	 of	 the	 security	 service	 description	 short	 conceptual	 description	 of	 the	 security	
mechanism	is	provided.	

																																																													
15	Regulation	(EU)	2016/679	of	the	European	Parliament	and	of	the	Council	of	27	April	2016	on	the	protection	
of	natural	persons	with	regard	to	the	processing	of	personal	data	and	on	the	free	movement	of	such	data,	and	
repealing	Directive	95/46/EC	(General	Data	Protection	Regulation)	

	

	 VICINITY	Architectural	Design	 88	

	 	

	
Public	

	

	

 Authentication	

The	 security	 service	authentication	 should	ensure	 that	entity	 (application,	person)	has	 the	 claimed	
for	provided	identity.	

In	authentication	entities	are	considered:	

• Users	and	technical	users	(software	components,	services,	storages,	applications);	
• IoT	objects	shared	within	the	VICINITY	Neighbourhood.	

	

VICINITY-ARCH-SEC-010	 Authentication	

The	 VICINITY	 shall	 support	 only	 standard	 based	 authentication	 mechanism.	 The	 VICINITY	 shall	
support	he	the	following	(one	or	more)	mechanism:	

• Username	and	password	authentication;	
• Digital	certificate-based	authentication	(such	as	X.509	certificates);	
• OAuth	2.0;	
• JSON	Web	Token;	
• SAML	2.0.	

All	entities	should	be	subject	of	the	authentication.	

Considered	requirements:	
VICINITY-NFUNC-SEC010,	VICINITY-NFUNC-SEC050	

 Credential	Management	

The	 credential	 management	 service	 shall	 manage	 the	 life	 cycle	 of	 entity	 credentials	 used	 in	
authentication	and	access	control	(authorization).	

The	 credential	 management	 service	 shall	 include	 credential	 generation,	 registration,	 change,	
recovery,	revocation	and	deletion.	

VICINITY-ARCH-SEC-020	 Credential	Management	

The	VICINITY	 shall	 store	 and	 transmit	 passwords,	 tokens	 and	 keys	 in	 irreversible	 encrypted	 form.	
Password	should	have	not	been	displayed	on	device	display.	

The	password	policy	should	be	applied	including	at	least	following	rules:	

• Minimum	length	specification;	
• Required	character	set;	
• Password	lifetime	expiry;	
• List	of	previous	passwords;	
• Passwords	must	be	changed	after	initial	login.	

Considered	requirements:	
VICINITY-NFUNC-SEC010	

	

The	credential	management	 service	 shall	 continuously	 revise	 requirements	 for	 security	parameters	
of	digital	certificates	and	tokens	based	on	the	current	best	practice.	

	

	 VICINITY	Architectural	Design	 89	

	 	

	
Public	

	

	

 Access	(authorization)	control	

The	access	control	(authorization)	service	shall	ensure	that	the	entity	has	access	to	resources	if	and	
only	if	it	is	permitted.	

VICINITY-ARCH-SEC030	 Access	(authorization)	control	

The	access	control	mechanism	shall	support	authorization	based	on:	

• Identity	–	user	access	to	VICINITY	neighbourhood	manage	user	interfaces	and	entities	access	
to	VICINITY	internal	services	and	resources	(such	as	storage	services,	etc.);	

• Role	 –	 entity	 authorization	 to	 functions	 of	 VICINITY	 Neighbourhood	 Manager	 based	 on	
users’	roles;	

• Context	–	such	as	entity	authorization	to	IoT	object	properties,	actions	and	events.	

Considered	requirements:	
VICINITY-NFUNC-SEC020	

	

The	 access	 control	 mechanism	 shall	 support	 distribute	 sharing	 access	 rules	 within	 P2P	 Network	
(5.1.2.1).	

The	access	control	mechanism	shall	secure	fall	back	scenario	when	authentication	mechanism	is	not	
temporary	unavailable.	

 Privilege	Management	

The	privilege	management	 service	 shall	 support	 consistent	 and	 controlled	mechanism	 to	 associate	
access	rules	to	entities.	

The	privilege	management	shall	define:	

• Dedicated	owner	–	each	subject	of	the	access	control	should	have	its	owner;	
• Reasonable	 defaults	 –	 default	 privileges	 should	 be	 selected	 sensible	 (e.g.	 organisation	

manager	has	privilege	to	add	user	to	organisation);	
• Explicit	grant	–	implicit	granting	should	be	reduced	to	minimum;	
• Privilege	granting	only	by	the	owner;	
• Privilege	 recovery	 –	 in	 case	 of	 the	 software	 component	 recovery	 the	 privileges	 should	 be	

recovered	(i.e.	recovery	to	previous	state	or	most	secure	level);	

 Audit	trails	

VICINITY-ARCH-SEC040	 Audit	trails	

The	 VICINIT	 shall	 provide	means	 to	 support	 auditing	 in	 for	 important	 (which	might	 be	 subject	 of	
relevant	dispute)	actions	taken	in	VICINITY:	

• VICINITY	Cloud	components;	
• VICINITY	P2P	components;	
• VICINITY	Node	components.	

Considered	requirements:	
VICINITY-NFUNC-SEC060,	VICINITY-NFUNC-SEC050,	VICINITY-NFUNC-SEC070	

	

	

	 VICINITY	Architectural	Design	 90	

	 	

	
Public	

	

	

 Data	integrity	

VICINITY-ARCH-SEC050	 Data	integrity	

The	VICINIT	shall	provide	means	to	secure	data	integrity	of:	

• Exchange	of	user	data	from	data	origin	to	data	destination;	
• Meta	data	exchange	between	components;	
• And	audit	logs;	

Considered	requirements:	
VICINITY-NFUNC-SEC040	

 Accountability	

VICINITY-ARCH-SEC060	 Accountability	

Each	action	 (such	as	service	call,	message	exchange)	performed	should	be	perceived	 in	context	of	
the	action	originated	entity.	

Considered	requirements:	
VICINITY-NFUNC-SEC050	

 Data	confidentiality	

The	data	confidentiality	service	shall	ensure	that	data	is	not	disclosed	to	system	entities	unless	they	
have	been	authorized	to	know	the	data.	

VICINITY-ARCH-SEC070	 Data	confidentiality	

The	 VICINITY	 shall	 apply	 strong	 encryption	 algorithms	 (publicly	 available	 and	 subjected	 of	 public	
review)	to	ensure	data	confidentially	main	on	exchange	of	the	user	data.	

The	encryption	algorithm	parameters	shall	be	configurable	to	support	alignment	with	current	best	
practice.	

The	 encryption	 algorithm	 should	 be	 based	on	 symmetric	 all	 asymmetric	 encryption	 schemas.	 Key	
management	mechanism	should	ensure	that	data	key	is	stored	secure	and	reliable.	

Keys	 should	 be	 cryptographically	 strong	 and	 generated	 by	 well	 understood	 algorithms	 with	
sufficient	randomness	only.	

Considered	requirements:	
VICINITY-NFUNC-SEC030sa	

	

	

 Secured	communication	channel	

The	 secured	 communication	 channel	 service	 is	 to	 ensure	 confidentiality,	 integrity,	 availability,	
authenticity	 and	 accountability	 of	 exchanged	 data	 between	 peers	 (architecture	 components,	 user	
and	components).	

	

	 VICINITY	Architectural	Design	 91	

	 	

	
Public	

	

	

VICINITY-ARCH-SEC080	 Secured	communication	channel	

The	 VICINITY	 shall	 support	 secured	 communication	 channels	 between	 architecture	 components,	
user	and	components	including:	

• mutual	authentication	of	peers;	
• adequate	protection	of	exchanged	data	against	eavesdropping	and	data	tempering;	

Considered	requirements:	
VICINITY-NFUNC-SEC030	

	

 Non-repudiations	

The	 non-repudiation	 service	 shall	 provide	 protection	 against	 false	 denial	 of	 involvement	 in	 an	
association.	

The	 VICINIT	 shall	 provide	 means	 to	 support	 of	 non-repudiation	 for	 critical	 actions	 (such	 as:	 data	
processing	 consents,	 setting	 privilege,	 etc.)	 performed	 by	 (technical)	 user	 or	 user	 data	 exchange	
through	the	VICINITY	Nodes	(such	as	performing	action,	event	reception,	etc.).	

	

	 VICINITY	Architectural	Design	 92	

	 	

	
Public	

	

	

 Conclusions	
The	 goal	 of	 the	 VICINITY	 Architecture	 includes	 description	 of	 VICINITY	 components	 and	 concepts	
from	 static	 and	 behavioural	 point	 of	 view.	 Architecture	 design	 encompasses	 specifications	 of	
components	 functions	 and	 interactions,	 implementation	 and	 deployment.	 VICINITY	 Architecture	
design	should	be	interpreted	together	with	D1.5	VICINITY	Technical	requirements	specification.	

The	VICINITY	Architecture	has	been	broken	down	 into	several	architecture	components	grouped	 in	
VICINITY	Cloud	components	to	include:	

• VICINITY	Neighbourhood	manager;	
• Semantic	discovery	&	dynamic	configuration	agent	platform;	
• VICINITY	Communication	Server;	
• VICINITY	Gateway	API	Services;	

and	VICINITY	Node	components:	

• VICINITY	Communication	Node;	
• VICINITY	Gateway	API;	
• VICINITY	Agent	and	Adapter.	

Each	component	was	defined	by	set	of	principal	functions	and	information	flows	needed	to	provide	
these	 functions.	 These	 all	 information	 flows	 together	 define	 processes	 executed	 between	 these	
components.	The	processes	define	set	of	internal	and	external	interfaces	of	each	component.	

Detail	architecture	design	of	these	components	elaborate	concepts	of	their	features	focusing	on:	

• User	interface	functionality	in	VICINITY	Neighbourhood	Manager;	
• Managing	of	semantic	model	in	Semantic	discovery	&	dynamic	configuration	agent	platform;	
• Controlling	of	VICINITY	P2P	network	by	VICINITY	Communication	Server;	
• Creating	Virtual	Thing	Ecosystem	Description	in	VICINITY	Gateway	API	Services;	
• Securing	 data	 forwarding	 between	 integrated	 infrastructures	 by	 VICINITY	 Communication	

Node;	
• Integration	of	infrastructures	into	VICINITY	by	VICINITY	Agent	and	Adapter.	

The	 VICINITY	 architecture	 is	 supported	 by	 security,	 privacy,	 performance	 and	 availability	 concept	
such	as:	

• security	 transparently	 protects	 VICINITY	 itself	 and	 exchanged	 data,	 including	 role	 based	

access	 to	 data,	 data	 integrity	 and	 end-to-end	 security	 on	 VICINITY	 Communication	 Node	

supported	by	IoT	objects	description	and	sharing	access	rules;	

• privacy	by	design	to	protect	privacy	of	exchanged	data	between	peers	utilizing	the	VICINITY	

concept	of	 end-to-end	encryption	between	VICINITY	Communication	Nodes	defined	by	 IoT	

object	 descriptions	 and	 authorization	 based	 on	 sharing	 access	 rules	 provided	 by	 device	

owners	and	service	providers;	

• performance	addressed	by	near	to	real-time	message	exchange	in	peer-to-peer	network;	

• availability	 of	 components	 deployed	 in	 high	 available	 scale	 out	 VICINITY	 cloud	 and	 loosely	

coupled	P2P	network	of	VICINITY	Nodes	supporting	of	localisation	of	component	availability	

and	performance	issues.	

	

	 VICINITY	Architectural	Design	 93	

	 	

	
Public	

	

	

VICINITY	Technical	requirements	specification	is	an	input	for	WP3	and	WP4	to	break	down	VICINITY	
solution	into	the	smaller	manageable	software	component	for	detail	design	and	implementation.	

	

	 VICINITY	Architectural	Design	 94	

	 	

	
Public	

	

	

Appendix	A.	 Deployment	of	VICINITY	Node	on	VICINITY	Gateway	
	

As	shown	in	7.2,	the	VICINITY	Agent,	running	on	each	VICINITY	Node,	abstracts	from	device	bundles	
(that	is	actual	hardware	components	of	IoT	devices	as	well	as	their	potentially	closed-source	drivers).	
This	on	one	hand	gives	the	opportunity	to	manufacturers	to	connect	their	devices	to	the	VICINITY	by	
simply	providing	adapters/drivers	for	their	hardware	to	the	VICINITY	agent,	without	revealing	details	
about	their	internal	implementation	(Figure	36).	On	the	other	hand,	this	offers	software	developers	a	
uniform	access	to	the	attached	hardware.	Device	discovery,	offered	by	any	software	framework,	may	
then	 take	place	amongst	 these	device	bundles.	The	communication	between	attached	devices	and	
the	used	software	framework	can	use	any	arbitrary	messaging	protocols	like	e.g.	CoAP,	MQTT,	REST,	
etc.	

Finally,	 a	VICINITY	Node	offers	 the	VICINITY	Gateway	API	 for	 communication	 to/from	 the	VICINITY	
Cloud.	 It	 also	 acts	 as	 a	 VICINITY	 communication	 Node	 to	 enable	 P2P	 communication	 amongst	
VICINITY	Nodes.	To	this	end,	the	VICINITY	Agent	ultimately	needs	to	map	the	semantics	of	the	used	
Software	framework	onto	the	VICINITY	ontology.	

Software	 and	Hardware	 Frameworks	 are	 used	 to	 provide	 the	 necessary	Gateway	 functionality.	 An	
overview	 on	 potential	 Hardware	 and	 Software	 platforms	 is	 given	 in	 VICINITY	 Deliverable	 D2.1	 -	
Analysis	of	 Standardisation	Context	 and	Recommendations	 for	 Standards	 Involvement	 -	Chapter	2,	
which	was	submitted	in	September	2016.	

	

Figure 36 Deployment-Scenario of a VICINITY Node on VICINITY Gateway
	

	

	 VICINITY	Architectural	Design	 95	

	 	

	
Public	

	

	

Appendix	B.	 Reference	architecture	
	

ISO/IEC	 is	 the	 standardisation	 body	 responsible	 for	 developing	 international	 standards.	 The	 sub-
committee	 SC41	 is	 responsible	 for	 Internet	 of	 Things,	 Sensor	 networks	 and	 Wearables.	 A	
standardised	 IoT	 reference	 architecture	 has	 been	 drafted	 in	 ISO/IEC	 30141:2017	 using	 a	 common	
vocabulary,	 reusable	 designs	 and	 industry	 best	 practices.	 It	 uses	 a	 top	 down	 approach,	 beginning	
with	 collecting	 the	 most	 important	 characteristics	 of	 IoT,	 abstracting	 those	 into	 a	 generic	 IoT	
conceptual	model,	deriving	from	the	conceptual	model	to	a	high-level	system	based	reference	model	
and	 then	 breaking	 down	 from	 reference	 model	 to	 the	 five	 architecture	 views	 (functional	 view,	
system	view,	user	view,	information	view	and	communication	view)	from	different	perspectives.	The	
content	of	this	appendix	comes	from	the	ISO/IEC	standard	(not	from	VICINITY)	and	the	document	is	
still	under	development	(i.e.,	subject	to	changes).	

Appendix	B.1. IoT	Reference	architecture	in	relation	to	VICINITY	Architecture	

	
Figure 37 IoT Reference architecture in relation to VICINITY Architecture

From	 the	 IoT	 Reference	 architecture	 point	 of	 view,	 VICINITY	 interacts	with	 the	 following	 domains	
through	VICINITY	Agents	or	Adapters	in	VICINITY	Nodes:	

• IoT	 Resource	 Interchange	 domain	 to	 access	 resources	 of	 integrated	 IoT	 infrastructure	 or	
value	added	service;		

• Sensing	 &	 controlling	 domain	 to	 access	 or	 virtualize	 devices	 by	 VICINITY	 Agents	 and	
Adapters.	

	

	 VICINITY	Architectural	Design	 96	

	 	

	
Public	

	

	

Appendix	B.2. Introduction	to	IoT	Reference	architecture	
The	drafted	standard	covers	the	generalised	Reference	architecture	of	IoT,	which	is	to	serve	as	base	
when	to	develop	(specify)	context	specific	IoT	architectures	and	then	to	actual	systems.	The	contexts	
can	 be	 of	 different	 kinds,	 e.g.,	 industry	 verticals	 or	 national	 specific	 requirement	 sets,	 see	 figure	
below.	

	

	
Figure 38 Context of IoT architectures

The	IoT	Reference	Architecture	(RA)	describes	a	Conceptual	Model	(CM)	containing	common	entities	
and	their	relations,	and	a	Reference	Model	(RM)	and	different	architecture	views.		

	

Figure 39 Conceptual model of IoT reference architecture
CM	contains	the	following	elements	

	

Figure 40 Relation between overall model and architecture concepts

Clause structure

Conceptual model Reference model

Characteristics

Architecture view

are abstracted and generalized to build

develops

creates

Conceptual model

The overall modelConcepts
build

	

	 VICINITY	Architectural	Design	 97	

	 	

	
Public	

	

	

The	RM	contains	the	following	parts:		

	
Figure 41 IoT architecture reference model of Architecture views

An	IoT	system	is	interoperable	to	other	IoT	systems.	For	this	purpose,	functions	based	on	all	or	a	part	
of	these	characteristics	can	be	implemented	in	IoT	systems	according	to	services	and	operations.	The	
characteristics	of	IoT	systems	is	taken	from	ISO/IEC	30141:2017	and	defined	as	

Auto-configuration	 is	 the	 automatic	 configuration	 of	 devices	 based	 on	 the	 interworking	 of	
predefined	rules	(associated	algorithms	based	on	data	inputs).	Auto-configuration	includes	automatic	
networking,	automatic	service	provisioning	and	plug	&	play.	Auto-configuration	allows	an	IoT	system	
to	react	on	conditions	and	the	addition	and	removal	of	components	such	as	devices	and	networks.	
Auto-configuration	needs	security	and	authentication	mechanisms	to	make	sure	that	only	authorised	
components	 can	 be	 auto-configured	 into	 the	 system.	 Security	 mechanism	 need	 to	 be	 organized	
appropriately	for	each	market	segment.	

Auto-configuration	is	useful	for	IoT	systems	where	there	are	many	and	varied	components	that	can	
change	over	time	and	it	benefits	those	users	who	expect	robust	systems	because	auto-configuration	
can	allow	automatic	elimination	of	faulty	components	and	maintenance	of	a	working	system.	

Examples	 of	 auto-configuring	 devices	 and	 protocols	 include	 DHCP,	 Zero	 Configuration	 Networking	
(Zeroconf),	Bonjour,	UPnP	ISO/IEC	29341	series	etc.	

Separation	 of	 functional	 and	 management	 capabilities	 means	 that	 the	 functional	 interfaces	 and	
capabilities	of	an	IoT	component,	such	as	an	IoT	device,	are	cleanly	separated	from	the	management	
interfaces	and	capabilities	of	that	component.	This	typically	means	that	the	management	interface	is	
on	a	different	endpoint	 from	that	of	 the	 functional	 interface	and	 the	management	capabilities	are	
handled	by	different	software	components	than	the	functional	interfaces.	

Management	capabilities	and	functional	capabilities	have	logically	different		

• purposes	(execution/action	vs	information/description),		

• user	roles	(control	and	modify	behaviour	vs	transfer	or	consume	facts	and	information),		

• classification	and	types	of	data	(technical	or	system	specific	vs	personal/sensitive/public),	

	

	 VICINITY	Architectural	Design	 98	

	 	

	
Public	

	

	

• access	(e.g.	an	operator	may	access	system	configuration,	but	not	gathered	personal	data;	
while	the	user	can	access	the	personal	data	but	not	access	and	modify	system	configuration)	

• protocols,	formats	and	lifecycle	(e.g.	support	multiple	control	protocols	vs	meta-
data/structure	of	the	transferred	information,	which	is	particularly	important	considering	
interoperability	and	co-existence	of	multiple	versions	and	variants	of	management	
capabilities)	

Usually,	 the	 differences	 have	 associated	 specific	 risks	 and	 require	 special	 security	 (and	 other)	
controls,	e.g.	retention	policy	is	applicable	while	dealing	with	functional	data,	but	might	not	apply	to	
management	data;	access	control	may	be	weaker	for	a	user	and	stronger	for	an	administrator).	

Ubiquitous	penetration	of	 IoT	 into	virtually	all	areas	of	 life	 increases	the	attack	surface,	multiplying	
the	 number	 of	 potential	 attack	 targets	 and	 often	 making	 ineffective	 measures	 such	 as	 physical	
security	controls.	The	key	value	of	IoT	–	the	connection	of	numerous	edge	components	to	each	other	
and	 to	 IoT	 service	 components	 –	 increases	 the	 security	 concerns,	 since	 adding	 a	weak	 link	makes	
whole	chain	weak.	Applications	and	systems	previously	running	 in	well-protected	data	centres	may	
become	exposed	to	additional	threats	via	connected	IoT	components.	

Separation	of	management	 from	 functional	 capabilities	 enables	 or	 strengthens	 the	 ability	 to	 apply	
different	authorization,	authentication	and	protection	mechanisms	or	constraints	to	management	as	
opposed	 to	 functional	 capabilities.	 Broad	 sharing	 of	 data	 from	 an	 IoT	 system	 might	 be	 useful	 or	
desirable,	 and	 yet	 there	 are	 many	 circumstances	 where	 it	 is	 necessary	 to	 limit	 control	 of	 an	 IoT	
system	or	 component	 to	only	a	 subset	of	 the	entities	with	which	 the	data	 from	 that	 IoT	 system	 is	
shared.	

If	 an	 IoT	 system	 is	 used	 to	 provide	 sensors	 and	 data	 for	 HVAC	 or	 other	 building	 management	
systems,	it	might	be	desirable	to	share	data	with	other	inter-related	systems	(alarms,	access	control,	
power	 management	 or	 auxiliary	 power,	 etc.),	 while	 still	 retaining	 management	 of	 the	 system	 to	
ensure	system	constraints	are	respected.	

Distributed	 systems	 are	 the	 systems	 which,	 while	 being	 functionally	 integrated,	 consists	 of	 sub-
systems	 which	 may	 be	 physically	 separated	 and	 remotely	 located	 from	 one	 another.	 These	 sub-
systems	are	normally	connected	by	a	communication	link	(e.g.	data	bus).	(ISO	3511-4)	

IoT	systems	can	span	whole	buildings,	span	whole	cities,	and	even	span	the	globe.	Wide	distribution	
can	 also	 apply	 to	 data	 –	which	 can	 be	 stored	 at	 the	 edge	 of	 the	 network	 or	 stored	 centrally	 or	 a	
combination	 of	 the	 two.	 Distribution	 can	 also	 apply	 to	 processing	 –	 but	 processing	 can	 also	 takes	
place	centrally	(in	cloud	services),	but	processing	can	take	place	at	the	edge	of	the	network,	either	in	
the	 IoT	 gateways	 or	 even	 within	 (more	 capable	 types	 of)	 sensors	 and	 actuators.	 Today	 there	 are	
officially	more	mobile	devices	than	people	in	the	world.		

For	 industry	 4.0,	 manufacturing	 	 can	 be	 done	 using	 smart	 manufactory	 systems	 which	 have	
distributed	 assembly	 lines	 across	 many	 factories	 and	 closely	 integrated	 with	 3rd	 party	 suppliers,	
logistics	 companies,	 market	 providers	 and	 customers	 etc.	 all	 located	 far	 away	 from	 the	 assembly	
line"	after.	

Network	 communications	 –	 IoT	 systems	 depend	 on	 network	 communications	 of	 a	 number	 of	
different	 types.	 There	 are	 often	 limited	 range,	 low	 power	 networks	 collectively	 termed	 proximity	
networks	 that	 form	 the	 local	 connections	 for	 IoT	 devices.	 There	 are	 the	wide	 area	 networks	 that	
connect	the	proximity	networks	to	the	internet,	which	can	take	wired	and	wireless	forms	and	which	
may	be	dedicated	to	the	IoT	system	or	which	may	be	shared	general	purpose	networks.	

	

	 VICINITY	Architectural	Design	 99	

	 	

	
Public	

	

	

Communication	 protocols	 used	 can	 vary	 between	 the	 different	 network	 types.	 It	 is	 common	 for	
proximity	networks	to	use	specialized	protocols	suited	to	the	specialized	nature	of	these	networks.	IP	
is	more	typically	used	for	the	wide	area	networks,	although	the	higher	levels	in	the	protocol	stack	can	
vary,	with	HTTP	being	used	in	some	cases,	and	messaging	protocols	being	used	in	other	cases.	Some	
networks	are	deliberately	intermittent	in	nature	and	the	protocols	used	for	such	networks	reflect	the	
intermittent	transmission	pattern.	

IoT	 systems	 rely	 on	 the	 ability	 to	 exchange	 information	 units	 in	 a	 structured	manner	 based	 upon	
different	but	 interoperable	kinds	of	network	types.	Devices	need	to	both	transmit	and	receive	data	
and	need	to	communicate	with	software	services	that	may	be	located	nearby	or	in	a	remote	location.	

Gateways	may	be	employed	to	connect	networks	of	different	types,	typically	between	the	proximity	
networks	 and	 the	 wide	 area.	 Network	 structure	 may	 need	 to	 be	 dynamic	 and	 needs	 to	 consider	
properties	such	as	QoS,	resilience,	security	and	management	capabilities.	

In	a	proximity	network,	IoT	devices	can	be	connected	by	wireless	technology,	e.g.,	IEEE	802.15.4	and	
IEEE	802.11	in	communication	protocols	on	physical	and	data	link	layers.	Data	may	be	transported	by	
6LowPAN	which	 is	 IoT	 specific	 IP	 and	UDP.	 The	 IoT	 devices	 are	 then	 connected	 to	 a	 dedicated	 or	
general	 purpose	wide	 area	 network	 via	 area	 a	Gateway	which	 routes	 data	 between	 the	 proximity	
network	and	the	wide	area	network	as	necessary.	

Network	 management	 -	 IoT	 systems	 require	 network	 management.	 The	 form	 and	 purpose	 of	
network	management	and	operation	depend	on	the	network	type	and	network	ownership	and	the	
type	of	communication	taking	place	over	the	network.	Management	is	required	during	the	setting	up	
of	a	network,	 including	 the	handling	of	device	 identity	and	addresses,	profiles	 for	 the	usage	of	 the	
network	 and	 the	 inclusion	 of	 dynamic	 management	 capabilities.	 Management	 of	 the	 networks	
involves	control	over	QoS,	dynamic	extension	of	the	networks	(for	new	or	updated	IoT	devices),	fault	
handling	and	security	control.	Networks	must	also	handle	dynamic	and	transitory	membership	of	the	
network	by	mobile	devices	as	those	devices	move	into	or	out	of	the	range	of	the	network.	

Some	 networks	 are	 managed	 as	 part	 of	 the	 IoT	 system	 –	 particularly	 the	 proximity	 networks	
connecting	 the	 IoT	 devices.	 Other	 networks,	 particularly	 the	 wide	 area	 networks,	 may	 not	 be	
managed	 as	 part	 of	 the	 IoT	 system,	 since	 they	 are	 general	 purpose	 networks	 often	 run	 by	 other	
organizations	(e.g.	mobile	phone	networks).	

IoT	network	management	has	 to	 span	both	kinds	of	networks	and	assemble	 them	 into	a	 coherent	
system	that	can	serve	 the	purposes	of	 the	 IoT	system.	Where	 IoT	systems	make	use	of	 third	party	
general	 purpose	 communication	 networks,	 their	 management	 and	 operational	 interfaces	 can	 be	
used,	where	available.	

Energy	 monitoring	 by	 smart	 meters	 is	 an	 example	 of	 a	 context	 where	 strict	 operation	 and	
management	will	be	 likely,	since	there	 is	a	commercial	 interest	 in	such	an	 IoT	system	being	free	of	
unauthorized	 activity.	 In	 such	 a	 context,	 all	 of	 the	 IoT	 devices,	 communication	 networks	 and	
information	processing	platforms	are	managed.	

On	 the	 other	 hand,	 in	 case	 of	 home	 energy	 management,	 it	 is	 not	 necessary	 that	 the	 individual	
device	be	managed	strictly.	The	management	of	the	networks	and	information	processing	platforms	
of	the	vendor’s	support	infrastructure	will	be	done	more	as	a	means	of	selling	more	devices	than	as	a	
profit-generating	service	in	itself.	

Real	 time	 capability	 is	 pertaining	 to	 a	 system	 or	 mode	 of	 operation	 in	 which	 computation	 is	
performed	 during	 the	 actual	 time	 that	 an	 external	 process	 occurs,	 in	 order	 that	 the	 computation	
results	 can	 be	 used	 to	 control,	 monitor,	 or	 respond	 in	 a	 timely	 manner	 to	 the	 external	 process.	
(ISO/IEC/IEEE	24765).	

	

	 VICINITY	Architectural	Design	 100	

	 	

	
Public	

	

	

IoT	systems	often	function	in	real	time;	data	flows	in	continually	about	events	in	progress	and	there	
can	 be	 a	 need	 to	 produce	 timely	 responses	 to	 that	 stream	 of	 events.	 This	 may	 involve	 stream	
processing;	 acting	 on	 the	 event	 data	 as	 it	 arrives,	 comparing	 it	 against	 previous	 events	 and	 also	
against	static	data	in	order	to	react	in	the	most	appropriate	way.	

In	 process	 control	 systems,	 process	 parameters	 like	 temperature,	 flow,	 or	 pressure	 or	 status	 of	 a	
device	are	continuously	monitored	by	sensors	and	instant	actions	are	initiated.	

Self-description	is	process	by	which	components	of	an	IoT	system	define	their	capabilities	in	order	to	
inform	 other	 IoT	 components	 or	 other	 IoT	 systems	 for	 the	 purposes	 of	 composition	 and	
interoperability.	 Self-description	 includes	 interface	 specification,	 the	 capabilities	 of	 the	 IoT	
component,	 what	 types	 of	 devices	 can	 be	 connected	 to	 an	 IoT	 system,	 what	 kinds	 of	 service	 are	
made	available	by	the	IoT	system,	and	the	current	state	of	the	IoT	system.	

Self-description	 is	 needed	 for	 composability	 and	 interoperability	 for	 IoT	 systems	 and	 IoT	 devices.	
Self-description	 is	 of	 most	 benefit	 for	 those	 use	 cases	 where	 an	 IoT	 system	 needs	 to	 be	
interconnected	with	other	IoT	systems	or	those	use	cases	where	an	IoT	system	benefits	from	being	
extended	by	 the	 addition	of	 new	 IoT	devices.	Self-description	 is	 also	necessary	 for	mobile	devices	
and	also	for	devices	that	hibernate	–	both	of	which	join	and	leave	networks	on	a	regular	basis.	

Example	of	 self-description	 for	 an	 IoT	 system	and	protocols:	A	 system	which	uses	Bluetooth	 in	 its	
proximity	networks	provides	device	name	and	supported	service	list	to	each	other	when	connecting.	

Wifi	access	points	broadcast	the	SSID.		Wi-Fi	devices	send	passwords	and	MAC	addresses	to	an	access	
point	when	connecting	to	it.	

Service	subscription	–	It	is	often	the	case	that	IoT	users	subscribe	to	IoT	services	made	available	by	
IoT	service	providers.	In	this	case,	the	IoT	service	providers	make	available	a	subscription	process	by	
which	 the	 IoT	users	 can	 subscribe	 to	 a	particular	 IoT	 service.	 The	 subscription	process	 can	 include	
payments,	plus	a	clear	statement	of	any	pre-requisites	that	apply	to	the	IoT	user.	It	can	be	the	case	
that	the	IoT	service	 involves	the	 installation	of	 IoT	devices	and	the	installation	and	configuration	of	
software	components	–	these	are	typically	provided	or	specified	by	the	IoT	service	provider.	

In	 some	alternative	cases,	 the	 IoT	user	can	establish	 their	own	 IoT	service,	but	 in	 this	 case	 the	 IoT	
user	 has	 the	 burden	 of	 acquiring	 the	 necessary	 equipment	 and	 software	 and	 has	 the	 subsequent	
responsibilities	for	operating	and	maintaining	the	IoT	service.	

Some	IoT	systems	are	established	on	the	basis	of	a	subscription	model	where	the	IoT	users	pay	for	
their	use	of	the	IoT	system	–	in	these	cases,	the	IoT	service	provider	must	establish	clear	mechanisms	
for	establishing	and	maintaining	the	subscriptions.	

An	 example	 of	 a	 subscription-oriented	 IoT	 service	 is	 the	 provision	 of	 personal	 fitness	monitoring,	
where	the	IoT	user	must	purchase	a	wearable	IoT	device	that	is	then	connected	to	an	IoT	service	that	
monitors	their	activity	using	the	collected	data	and	provides	analysis	and	advice	on	how	their	activity	
is	helping	the	user	achieve	life	goals.	

Content-Awareness	 is	 the	 property	 of	 having	 sufficient	 knowledge	 of	 the	 information	 in	 an	 IoT	
component	and	 its	associated	meta-data.	Devices	and	services	with	content-awareness	are	able	 to	
adapt	interfaces,	abstract	application	data,	improve	information	retrieval	precision,	discover	services,	
and	enable	appropriate	user	interactions.	

Content-Awareness	 facilitates	 appropriate	 functional	 operations,	 such	 as	 data	 routing,	 speed	 of	
delivery,	security	capabilities	such	as	encryption,	based	on	factors	such	as	location,	quality	of	service	
requirements	and	sensitivity	of	data.	

	

	 VICINITY	Architectural	Design	 101	

	 	

	
Public	

	

	

This	 capability	 can	 be	 essential	 in	 many	 applications	 including	 health	 services,	 broadcasting,	
surveillance	 systems	and	emergency	 services	where	 some	 types	of	 information	or	data	 flows	have	
specific	requirements	with	respect	to	timeliness,	security	and	privacy.	

Context-Awareness	 is	 the	 property	 of	 an	 IoT	 device,	 service	 or	 system	 being	 able	 to	monitor	 the	
environment	in	which	it	is	operating	environment	and	events	within	that	environment	to	determine	
information	 such	 as	 when	 (time	 awareness),	 where	 (location	 awareness),	 or	 in	 what	 order	
(awareness	of	sequence	of	events)	one	or	more	observations	occurred	in	the	physical	world.	

Context-Awareness	enables	 flexible,	user-customized	and	autonomic	services	based	on	the	related	
context	of	IoT	components	and/or	users.	Context	information	is	used	as	the	basis	for	taking	actions	in	
response	 to	 observations,	 possibly	 through	 the	 use	 of	 sensor	 information	 and	 actuators.	 To	 fully	
utilize	an	observation	and	effect	an	action,	the	understanding	of	context	is	often	critical.	

An	 example	 of	 context	 awareness	 would	 be	 location-based	 services,	 such	 as	 	 a	 system	 in	 which	
different	services	are	presented	according	to	the	location	of	a	use	

In	cases	of	an	emergency	like	a	fire,	the	arrival	of	the	fire	service	requires	that	the	doors	to	a	building	
shall	be	unlocked.	The	security	policy	that	governs	the	door’s	access	can	be	enhanced	with	context.	
The	 context	 here	 is	 that	 an	 emergency	 situation	 is	 currently	 happening	 and	 that	 the	 emergency	
services	are	in	the	vicinity.	Based	on	these	two	contextual	inputs	the	policy	could	enable	the	system	
to	unlock	the	door	automatically	and	provide	access	without	the	need	for	further	authorisation.	

Timeliness	 is	the	property	of	performing	an	action,	function,	or	service	within	a	specified	period	of	
time,	which	supports	deterministic	operations.		

As	IoT	systems	act	on	the	physical	world,	some	events	initiated	by	the	IoT	systems	need	to	occur	at	
certain	 times,	 or	 within	 certain	 intervals	 of	 time,	 or	 in	 a	 particular	 sequence	 in	 relation	 to	 other	
events.	To	achieve	this,	the	actions,	functions,	and	services	that	lead	to	such	events	need	to	happen	
within	specific	time	constraints.	Timeliness	in	IoT	includes	not	only	latency	related	issues,	but	other	
aspects	such	as	jitter,	frequency/sampling	rate,	and	phase.	

An	example	 in	an	 industrial	manufacturing	process	context	might	 involve	some	sensors	monitoring	
the	quality	of	items	flowing	down	an	automated	production	line	

In	an	industrial	manufacturing	process,	an	example	is	where	some	sensors	are	monitoring	the	quality	
of	 items	 flowing	 down	 an	 automated	 production	 line.	 Any	 items	which	 are	 considered	 below	 the	
required	quality	must	be	removed	from	the	 line.	The	removal	 is	performed	by	some	actuators	that	
divert	the	relevant	items	off	the	line.	To	achieve	this,	there	is	a	strict	time	limit	on	commanding	the	
actuators	to	perform	the	diversion	–	all	the	processing	of	sensor	information	and	other	relevant	data	
must	 be	 completed	within	 the	 time	 limit.	Where	 IoT	 entities	 are	 part	 of	 any	 kind	 of	 control	 loop,	
overall	processing	time	for	the	loop	is	critical.	

Composability	is	the	ability	to	combine	discrete	IoT	components	into	an	IoT	system	to	achieve	a	set	
of	goals	and	objectives.	

System	integration,	interoperability	and	composability	deal	with	how	the	functional	components	are	
assembled	to	form	a	complete	IoT	system	and	how	the	functional	components	connect	to	each	other	
and	 the	 binding	 mechanisms	 which	 are	 used	 (e.g.	 dynamic	 or	 static,	 agent-based	 or	 P2P).	
Interoperability	 and	 composability	 are	 important	 topics	 in	 both	 the	 cyber	 and	 physical	 spaces.	
Composability	 imposes	a	stronger	requirement	than	 interoperability	 in	that	 it	requires	components	
not	 only	 compatible	 in	 their	 interfaces	 but	 exchangeable	 with	 other	 components.	 At	 a	 minimum	
share	 similar	 components	 and	 provide	 improvements	 on	 any	 of	 the	 characteristics	 such	 as	 timing	
behaviours,	performance,	scalability	and	security.	When	a	component	is	replaced	by	another	of	the	
same	kind	that	 is	compostable	and	compatible	 the	overall	 system	functions	should,	at	a	minimum,	

	

	 VICINITY	Architectural	Design	 102	

	 	

	
Public	

	

	

remain	unchanged	but	consideration	can	be	given	to	permitting	 improvements	 in	system	functions	
and	characteristics.		

An	example	of	composability	might	be	the	ability	to	swap	out	sensor	components	from	one	vendor	
and	 replace	 them	with	 sensor	 components	produced	by	a	different	 vendor.	 In	 this	 example,	 there	
might	be	two	levels	of	composability.	

First	would	be	complete	interchangeability	of	“commodity”	functionality,	such	as	an	IoT	device	from	
Vendor	A	being	fully	replaceable	with	one	from	Vendor	B.	

A	second	level	of	composability	(or	possibly	interoperability)	might	be	an	IoT	control	that	is	vendor-
specific	at	the	interface	between	the	IoT	component	and	a	physical	process	device	being	controlled	
(a	valve,	motor,	switch,	pump	or	fan,	for	example),	but	 is	still	 fully	 interchangeable	at	the	interface	
between	the	IoT	device	and	the	rest	of	the	IoT	system.	In	this	sort	of	example,	the	IoT	device	would	
serve	 as	 a	 kind	 of	 “middleware”	 between	 the	 vendor-agnostic	 IoT	 infrastructure,	 and	 the	 vendor-
specific	physical	devices	or	mechanisms	being	controlled.	

Discoverability	allows	users,	services,	and	other	devices,	to	find	not	only	devices	on	the	network	but	
also	the	capabilities	and	services	they	offer	at	any	particular	time.	Discovery	services	allow	IoT	users,	
services,	devices	and	data	from	devices	to	be	located,	identified,	and	accessed	according	to	different	
criteria,	such	as	geographic	location,	criteria,	such	as	capabilities	and	geographic	location.	

Services	 connected	 with	 an	 IoT	 system	 can	 indicate	 what	 information	 can	 be	 found	 by	 a	
Discovery/Lookup	 service	 in	 accordance	 with	 predefined	 rules	 for	 each	 market	 segment.	
Discovery/Lookup	services	allow	 IoT	 systems	 to	 locate	other	devices,	 services	or	 systems	based	on	
parameters	 such	 as	 geographical	 location,	 capabilities,	 interfaces,	 accessibility,	 ownership,	 security	
policy,	operational	configuration,	data	provided,	data	consumed,	or	other	relevant	factors.	

IoT	systems	which	support	dynamic	configuration,	such	as	the	addition	of	new	devices	and	services	
to	 the	 IoT	 system,	 have	 a	 requirement	 for	 some	 form	 of	 discoverability,	 since	 there	 is	 a	 need	 to	
identify	 and	 characterize	 new	 components	 added	 to	 the	 system.	 So	 the	 addition	 of	 a	 new	
temperature	sensor	in	a	building	monitoring	IoT	system	is	an	example,	where	it	is	necessary	to	bring	
the	 new	 sensor	 into	 the	 existing	 system	 with	 minimum	 effort.	 Various	 protocols	 and	 software	
solutions	exist	to	provide	discovery	in	IoT	systems,	with	a	variety	of	architectures,	some	server	based	
others	being	P2P.	Examples	include	Hypercat,	Alljoyn	and	Consul.	

Modularity	 is	when	a	component	is	a	distinct	unit	that	can	be	combined	with	other	components	or	
removed	cleanly	from	the	system	and	replaced	with	another	module	which	occupies	the	same	space	
and	conforms	to	the	same	physical	and	logical	interfaces.	

Modularity	 allows	 components	 to	 be	 combined	 in	 different	 configurations	 to	 form	 systems	 as	
needed.	 By	 focusing	 on	 standardized	 interfaces	 and	 not	 specifying	 the	 internal	 workings	 of	 each	
component,	implementers	have	flexibility	in	the	design	of	components	and	IoT	systems.	

An	example	of	Modularity	in	an	IoT	system	might	be	a	smart	thermostat.	Because	the	interface	to	an	
HVAC	 system	and	 the	 interface	 to	 a	 larger	 IoT	 infrastructure	 could	 both	 be	 defined	 in	 compliance	
with	 open	 interface	 standards,	 there	 is	 nothing	 to	 prevent	 a	 thermostat	 from	 Vendor	 A	 being	
replaced	by	one	from	Vendor	B.	Furthermore,	it	is	not	important	how	the	functionality	of	the	device	
is	implemented.	Vendor	A	might	provide	the	capability	in	the	form	of	an	ASIC-based	state	machine,	
while	Vendor	B’s	design	might	be	based	on	a	microcontroller.	As	 long	as	both	devices	perform	the	
same	 functions	 in	 response	 to	 the	 same	 inputs,	 and	 they	 are	 both	 compliant	with	 open	 standard	
interfaces	without	imposing	any	proprietary	constraints,	there	is	nothing	to	prevent	one	from	being	
replaced	by	the	other.	

	

	 VICINITY	Architectural	Design	 103	

	 	

	
Public	

	

	

Network	 connectivity	–	 In	 IoT	systems,	components	communicate	with	each	other	across	network	
links.	 The	 connections	 between	 components	 are	 established	 using	 either	wired	 or	wireless	media.	
Networked	 IoT	 devices	 that	 originate,	 route	 and	 terminate	 communications	 are	 described	 as	
(network)	nodes.	Endpoint	network	devices	are	the	source	or	destination	of	any	kind	of	information.	
Any	IoT	related	networking	communications	protocol	is	layered	onto	more	specific	or	more	general	
communications	 protocols,	 down	 to	 the	 physical	 layer	 that	 directly	 deals	 with	 the	 transmission	
media	at	every	network	node.	

IoT	systems	rely	on	the	ability	to	exchange	information	in	a	structured	manner	based	upon	multiple	
different	but	interworkable	network	topologies	–	all	within	a	physical,	wired	or	wireless	network.	IoT	
devices	are	called	“networked”	when	one	device	is	able	to	exchange	information	with	other	devices	
whether	or	not	they	have	a	direct	connection	to	each	other.	 IoT	network	structure	can	be	static	or	
dynamic	 and	 may	 have	 capabilities	 such	 as	 QoS,	 resilience,	 encryption,	 authentication	 and	
authorisation.	

The	 scale	 of	 an	 IoT	 network	 can	 vary	 substantially,	 from	 local	 proximity	 networks	 connecting	 a	
handful	of	devices	over	a	 limited	distance,	to	global	scale	networks	operating	at	 Internet	scale	and	
connecting	very	large	numbers	of	devices	and	service	components.	

It	 is	 typical	 for	 the	networks	 in	 IoT	 systems	 to	be	heterogeneous	and	connected	 to	each	other	via	
gateways	or	equivalent	components.	

Shareability	 is	 the	 ability	 to	 share	 the	 use	 of	 an	 individual	 component	 between	 multiple	
interconnected	systems.	

Many	 IoT	 components	 are	 underutilized	 since	 a	 single	 system	 often	 uses	 only	 a	 fraction	 of	 a	
component’s	capabilities.		Resources	can	be	used	more	efficiently	if	the	functionalities	or	outputs	of	
components	can	be	shared	among	multiple	systems.	

The	motion	 detection	 capabilities	 of	 a	 lighting	 control	 system	 could	 be	 leveraged	 by	 the	 security	
system	to	increase	the	security	systems	capability.	

Temperature	sensing	for	heating	control	could	be	used	by	the	security	system	for	fire	detection.	

Unique	 identification	 is	 the	 characteristic	 of	 an	 IoT	 system	 to	 unambiguously	 and	 repeatedly	
associate	 the	entities	within	 the	system	with	an	 individual	name,	code,	 symbol,	or	number,	and	to	
interact	with	the	entities,	or	trace	or	control	their	activities,	by	referencing	that	name,	code,	symbol	
or	 number.	 These	 entities	 include	 the	 components	 of	 the	 IoT	 system	 itself,	 such	 as	 the	 software	
components,	the	sensors	and	actuators	and	the	network	components.	

It	 is	essential	 that	 the	entities	 in	an	 IoT	system	can	be	distinguished	 from	each	other.	This	enables	
interoperability	and	global	services	across	heterogeneous	IoT	systems.	It	is	important	for	entities	to	
be	uniquely	 identifiable	so	that	 IoT	systems	can	monitor	and	communicate	with	specific	entities.	A	
variety	 of	 identification	 schemes	may	 be	 supported	 in	 specific	 implementations	 of	 IoT	 systems	 to	
meet	the	application	requirements.	

IPv4,	IPv6,	URI,	and	FQDNs	are	used	as	unique,	unambiguous	identification	of	network	endpoints	in	
internet	 applications.	 Individual	 hardware	 devices,	 software	 etc.	may	 have	 unique	manufacturer’s	
IDs,	OIDs,	UUIDs	or	other	 identifiers,	which	 similarly	allow	unique,	unambiguous	 identification	and	
can	be	used	to	tag	data	from	those	entities	or	direct	commands	to	them.	

Physical	entities	are	often	given	unique	identifiers	in	the	form	of	RFID	tags,	barcodes	and	equivalent	
labelling	 technologies.	 For	 humans,	 biometric	 information	 can	 be	 used	 to	 provide	 unique	
identification.	

	

	 VICINITY	Architectural	Design	 104	

	 	

	
Public	

	

	

Ownership	 –	 Asset	 management,	 according	 to	 ISO	 55000,	 is	 the	 "coordinated	 activity	 of	 an	
organization	to	realise	value	from	assets”,	where	an	asset	is	defined	to	be	“…	an	item,	thing	or	entity	
that	 has	 potential	 or	 actual	 value	 to	 an	 organization.”	 Management	 implies	 responsibility	 and	
ownership.	

From	 ISO	17799:	 “The	 asset	 owner	 is	 the	 person	or	 group	 of	 people	who	have	been	 identified	 by	
management	 as	 having	 responsibility	 for	 the	 maintenance	 of	 the	 confidentiality,	 availability	 and	
integrity	of	that	asset.	The	asset	owner	may	change	during	the	lifecycle	of	the	asset.	The	owner	does	
not	normally	or	necessarily	personally	own	the	asset.	 In	most	cases	the	employing	organisation,	 its	
customers	or	suppliers	will	be	the	entity	with	property	rights	to	the	asset.”	

Ownership	 is	 also	 compassable.	 For	 example,	 an	 operational	 asset	may	 incorporate	 assemblies	 or	
subassemblies	 that	 have	 different	 owners,	 but	 work	 in	 conjunction	 with	 each	 other.	 Using	 the	
concept	of	domain,	 ISO	27001:2005	states	 that	 the	“…	typical	objectives	of	 the	asset	management	
domain	 is	 to	 identify	 and	 create	 an	 inventory	 of	 all	 assets,	 establish	 an	 ownership	 on	 all	 assets	
identified,	 establish	 a	 set	 of	 rules	 for	 the	 acceptable	 use	 of	 assets,	 establish	 a	 framework	 for	
classification	 of	 assets,	 establish	 an	 asset	 labelling	 and	 handling	 guideline.”	 An	 asset	management	
domain	represents	a	boundary	where	responsibility	may	transfer	from	one	owner	to	another.	

Legacy	 support	 is	 the	 concept	 that	 an	 IoT	 system	 might	 need	 to	 incorporate	 existing	 installed	
components	 even	 where	 these	 components	 embody	 technologies	 that	 are	 no	 longer	 standard	 or	
approved.	 A	 service,	 a	 protocol,	 a	 device,	 system,	 component,	 technology,	 or	 standard	 that	 is	
outdated	but	which	is	still	in	current	use,	may	need	to	be	incorporated	into	an	IoT	system.	

Support	of	legacy	component	integration	and	migration	can	be	important,	although	when	supporting	
legacy	components,	 it	 is	also	 important	to	ensure	that	the	design	of	new	components	and	systems	
does	 not	 unnecessarily	 limit	 future	 system	 evolution.	 To	 prevent	 prematurely	 stranding	 legacy	
investment,	 a	 plan	 for	 adaptation	 and	migration	 of	 legacy	 systems	 is	 important.	 Care	 ought	 to	 be	
taken	when	integrating	legacy	components	to	ensure	that	security	and	other	essential	performance	
and	functional	requirements	are	met.	Legacy	components	may	increase	risk	and	vulnerabilities.	Since	
current	technology	becomes	legacy	technology	in	the	future	it	is	important	to	have	a	process	in	place	
for	 managing	 legacy	 aspects	 of	 IoT.	 	 The	 different	 lifecycles	 of	 physical	 systems	 and	 information	
systems	also	creates	additional	challenges	for	managing	legacy	aspects	in	IoT.	

One	example	of	transition	from	legacy	to	future	compatibility	is	the	current	slow	rollover	from	IPv4	
compliance	 to	 IPv6	 compliance.	 The	 limits	 of	 the	 IPv4	 address	 space	 and	 of	 the	 IPv4	 protocol	 are	
known,	 and	 the	 transition	 to	 IPv6	 is	 clearly	 the	 way	 of	 the	 future,	 but	 the	 varying	 pace	 of	 the	
transition,	depending	on	the	context,	makes	it	a	topic	which	can	be	very	complex.	

Many	existing	standards	and	application	environments	still	assume	and	depend	on	IPv4,	and	yet	it’s	
clear	that	continuing	to	use	IPv4	forever	is	not	a	viable	strategy	since	there	are	insufficient	addresses	
and	running	multiple	devices	behind	a	single	IP	address	is	not	always	appropriate.	Deciding	how	and	
when	to	make	the	transition,	however,	is	a	topic	that	nobody	has	a	universal	answer	to.	

Well-defined	 components	 –	 IoT	 entities	 are	 deemed	 to	 be	 well-defined	 when	 an	 accurate	
description	 of	 their	 capabilities	 and	 characteristics	 is	 available,	 including	 any	 associated	
uncertainties.	 Capability	 information	 includes	 not	 only	 information	 about	 the	 specific	 component	
functionality,	but	configuration,	communication,	security,	reliability	and	other	relevant	information.	

Many	 components	 are	 used	 to	 assemble	 an	 IoT	 system.	 They	 are	 typically	 discovered	 through	 an	
information	system	 interface.	 	Without	understanding	 the	capabilities	of	each	component	 that	will	
be	used	within	a	system	it	is	difficult	to	understand	whether	the	system	meets	its	design	goals.	

An	 example	 of	 an	 implementation	 of	 a	well-defined	 component	 is:	 A	 particular	 IoT	 component	 is	
available	with	 varying	 amounts	 of	memory	 or	 support	 for	 various	 RF	 frequencies,	 waveforms	 and	

	

	 VICINITY	Architectural	Design	 105	

	 	

	
Public	

	

	

protocols.	Such	a	device	has	a	baseline	 information	 interface	which	all	 the	variants	make	use	of	 to	
inform	other	 IoT	 components	of	 the	 list	of	 capabilities	possessed	by	 the	device.	Once	 the	devices’	
respective	configurations	have	been	exchanged,	each	device’s	software	or	applications	can	then	self-
adjust	to	take	into	account	the	capabilities	of	the	other	devices.	

Flexibility	 is	the	capability	of	an	IoT	system,	service,	device	or	other	component	to	provide	a	varied	
range	of	functionality,	depending	on	need	or	context.	

History	and	experience	 tell	us	 that	while	 there	are	exceptions,	 the	economic	and	 functional	 sweet	
spot	 for	 flexibility	 is	usually	somewhere	 in	the	middle,	between	the	extremes	of	a	dedicated	single	
purpose	 component	 on	 one	 end	 of	 the	 spectrum,	 and	 a	 massively	 capable,	 programmable,	
extensible,	“all	things	to	all	people”	general	purpose	component	at	the	other	end.	

It	 is	 possible	 to	 break	 down	 the	 general	 concept	 of	 flexibility	 into	 different	 sub-categories	 or	
dimensions.	

One	dimension	of	flexibility	is	the	distinction	between	IoT	capabilities	hosted	on	a	platform	powered	
by	 a	 general	 purpose	 computing	 core	 and	 a	 similar	 capability	 implemented	 in	 the	 form	 of	 state	
machines	 implemented	 using	 discrete	 components,	 programmable	 FPGAs,	 or	 a	 purpose-specific	
ASIC.	 The	 state	machine	 versions	 tend	 to	 be	 smaller,	 faster,	more	power	 efficient,	 and	potentially	
more	 secure	 (due	 to	 a	 more	 limited	 range	 of	 capability).	 The	 general	 purpose	 version	 trades	 off	
speed,	size,	power	consumption	and	other	traits	to	gain	more	generalized	capabilities,	and	a	greater	
ability	to	adapt	to	meet	unanticipated	future	requirements.	

A	 second	 dimension	 of	 flexibility	 is	 illustrated	 by	 the	 distinction	 between	 the	 following	 kinds	 of	
device:	

1) A	 device	 which	 has	 fixed,	 nonprogrammable,	 non-extensible	 functionality	 –	 “hard	 wired,	
single	purpose”.	

2) A	device	which	has	fixed	H/W	capability,	but	which	provides	some	amount	of	configurability	
within	the	single	available	format.	

3) A	 device	which	 is	 both	 programmable	 and	 expandable	 in	 the	 hardware	 domain	 –	 such	 as	
adding	memory,	adding	more	computational	capability	or	adding	RF	channel	capability.		

4) A	family	of	devices,	each	of	which	might	fall	into	categories	1-3,	from	which	an	integrator	can	
select	the	ones)	which	are	appropriate	for	a	given	context.	

5) A	 family	 of	 devices	 such	 as	 in	 4,	where	 some	of	 the	 options	 provide	 different	 amounts	 of	
composability	or	modularity,	at	different	levels	of	abstraction.	

A	 third	 dimension	 of	 flexibility	 might	 involve	 the	 range	 of	 standards,	 protocols,	 formats,	 and	
interfaces	 which	 an	 IoT	 component	 is	 designed	 to	 support,	 where	 that	 support	 might	 then	 be	
designed	and	implemented	taking	the	factors	above	into	account.	

Aside	 from	 the	 IoT	 component,	 there	 is	 another	 dimension	 of	 flexibility	 that	 involves	 the	 overall	
design	 of	 the	 IoT	 system.	 As	 in	 other	 domains,	 there	 will	 likely	 be	 open	 IoT	 ecosystems,	 and	
proprietary	IoT	ecosystems,	with	varying	amounts	of	overlap	between	the	two.	

An	 example	 of	 differences	 regarding	 flexibility	 in	 the	 context	 of	 a	 sensor	 device	 is	 such	 as	 a	
thermostat.	 The	 simplest	 devices	 may	 only	 offer	 simple	 temperature	 control	 and	 reporting	 of	
temperature.	More	sophisticated	and	flexible	thermostats	allow	for	remote	control	via	smartphone,	
can	be	connected	to	other	IoT	devices	in	the	building	to	detect	occupancy,	to	gain	information	about	

	

	 VICINITY	Architectural	Design	 106	

	 	

	
Public	

	

	

the	weather	and	so	on	–	and	these	more	capable	devices	typically	have	software	components	that	
can	themselves	be	upgraded	to	offer	newer	capabilities.	

Manageability	addresses	aspects	of	IoT	systems	such	as	device	management,	network	management,	
system	management,	and	interface	maintenance	and	alerts.	Manageability	is	important	to	meet	IoT	
system	 requirements.	 Components	 capable	 of	monitoring	 the	 system	 and	 changing	 configurations	
are	needed	for	manageability	of	the	IoT	device,	network	and	system.	

Many	IoT	devices,	networks,	and	systems	are	unmanned	and	run	automatically.	Special	care	must	be	
taken	to	ensure	that	such	systems	remain	manageable	even	when	parts	of	the	system	malfunction,	
become	 unstable	 or	 mis-calibrated	 in	 the	 course	 of	 operation.	 Even	 in	 circumstances	 where	
individual	 IoT	entities	are	accessible,	the	potentially	 large	scale	and	geographic	span	of	IoT	systems	
argues	 for	 the	 ability	 to	manage	 IoT	 entities	 remotely	 to	 the	 greatest	 extent	 possible,	 to	 increase	
both	convenience	and	operational	effectiveness.	

IoT	devices	such	as	smoke	sensors	are	deployed	in	various	 locations	 in	buildings.	These	devices	are	
often	hard	to	maintain	because	of	their	 locations.	Any	type	of	malfunction	could	cause	undesirable	
events	and	consequences.	Thus,	remote	manageability	should	be	a	system	design	consideration	and	
goal	 from	 the	 beginning	 of	 specification,	 and	 throughout	 the	 development,	 and	 deployment,	 and	
operational	lifecycle	of	the	IoT	system.	

Additionally,	 software	 updates	 are	 necessary	 to	 ensure	 that	 devices	 and	 systems	 maintain	
functionality	and	the	latest	security	vulnerabilities	are	patched.	The	manageability	capabilities	of	an	
IoT	 entity	 might	 include	 device	 state	 monitoring	 capability,	 the	 link	 monitoring,	 calibration,	 etc.	
Update	 servers	 should	 be	 able	 to	 authenticate	 the	 IoT	 component	 and	 vice	 versa	 (i.e.,	 mutual	
authentication).		Updates	should	be	digitally	signed	to	ensure	its	authenticity	and	integrity.		Updates	
should	be	transmitted	over	a	secure	channel,	where	possible	

In	the	context	of	reliability,	accuracy	 is	the	capability	of	an	IoT	device,	service	or	system	to	provide	
sensor	output	calculations	or	actions	within	the	expected	range	of	acceptable	precision	 in	absolute	
terms,	relative	terms,	or	both.	

An	 appropriate	 level	 of	 accuracy	 is	 essential	 to	 some	 IoT	 system	 deployments	 and	 applications.	
Depending	on	the	context,	differing	degrees	of	accuracy	might	be	required.	

In	a	medical	or	manufacturing	context,	 it	might	be	critical	 for	an	 IoT	Device,	application	or	 system	
providing	 temperature	 information	 or	 control	 to	 be	 accurate	 to	 within	 a	 tenth	 of	 a	 degree	
Fahrenheit,	 while	 in	 a	 home	 HVAC	 context,	 accuracy	 to	 plus	 or	 minus	 two	 degrees	 might	 be	
adequate.	

Reliability	 is	 the	 trait	 of	 a	 system	 exhibiting	 consistent	 behaviour	 –	 preferably	 the	 intended	
behaviour.	An	appropriate	level	of	reliability	in	capabilities	such	as	communication,	service	and	data	
management	capabilities	is	important	to	meet	system	requirements.	

An	 appropriate	 level	 of	 reliability	 is	 essential	 in	 diverse	 IoT	 system	deployments	 and	 applications.	
Reliability	 can	 be	 highly	 critical	 in	 some	 applications,	 e.g.	 for	 specific	 health	 related	 applications,	
industrial	manufacturing	operations	and	time-critical	applications.	

Reliability	of	data	is	of	great	importance	for	the	decision-making	processes	of	many	IoT	systems.	The	
absence	of	data	or	data	corruption	can	lead	to	 incorrect	decisions	or	the	failure	to	make	decisions.	
Reliability	 of	 communications	 networks	 is	 important	 for	 ensuring	 the	 availability	 and	 correct	
operation	of	IoT	systems,	particularly	in	mission-critical	use	cases.	

	

	 VICINITY	Architectural	Design	 107	

	 	

	
Public	

	

	

Medical	 devices	 are	 one	 potential	 IoT	 application	 area	 where	 the	 specifications	 for	 mean	 time	
between	 failure	might	be	quite	 stringent,	due	 to	 the	possibility	of	 injury	or	death	 if	 an	 IoT	device,	
application	or	system	providing	medical	capability	were	to	fail	while	a	patient	is	being	treated.	

Resilience	 is	 the	 ability	 of	 an	 IoT	 system	or	 its	 components	 to	 continue	 to	 perform	 their	 required	
function	in	the	presence	of	faults	and	failures.	

Communication,	 device	 or	 software	 component	 failures	 are	 to	 be	 expected	 in	 IoT	 systems	 and	
without	 appropriate	design,	 they	 can	 escalate	quickly	 causing	 the	 global	 failure	 of	 the	 system.	 IoT	
systems	need	to	be	designed	for	resilience,	incorporating	self-monitoring	and	self-healing	techniques	
to	improve	the	system	resilience.	

An	 IoT	 system	 has	 to	 be	 resilient	 to	 gateway	 failures	 to	 ensure	 continuing	 communications	 paths	
between	software	components	and	IoT	devices.	

One	 approach	 to	 resiliency	 is	 to	 adopt	 a	master-slave	design	where	 if	 the	master	 unit	 fails	 then	 a	
redundant	device	is	available	to	assume	the	master	role.	

For	networks,	a	mesh	network	design	is	resilient	to	the	failure	of	one	link	or	one	node	-	data	can	still	
flow	from	source	to	sink	through	an	alternative	route.	

Security	 –	 Availability	 is	 the	 ability	 of	 a	 system	 to	 be	 accessible	 and	 usable	 on	 demand	 by	 an	
authorized	entity.	IoT	systems	can	include	both	human	users	and	service	components	as	"authorized	
entities".	

In	IoT	systems	availability	can	be	seen	in	terms	of	devices,	data	and	services.	Availability	of	a	device	is	
related	 both	 to	 its	 inherent	 properties	 of	 operating	 correctly	 over	 time	 and	 to	 the	 network	
connectivity	 of	 the	 device.	 Availability	 of	 data	 is	 related	 to	 the	 ability	 of	 the	 system	 to	 get	 the	
requested	data	to	and		from	a	system	component.	Availability	of	services	is	related	to	the	ability	of	
the	system	to	provide	the	requested	service	to	users	with	a	pre-defined	QoS.	

In	some	critical	applications,	e.g.	health	monitoring	or	intrusion	detection,	devices	and	data	have	to	
be	 always	 available	 so	 that	 alarms	 can	 be	 sent	 to	 the	 system	 immediately	 when	 raised.	 In	 these	
cases,	 system	 design	 must	 take	 into	 account	 potential	 failure	 modes	 and	 provide	 means	 of	
continuing	 operations,	 such	 as	 power	 supply	 backups,	 redundant	 devices,	 multiple	 instances	 of	 a	
service.	

Confidentiality	 is	the	property,	that	 information	is	not	made	available	or	disclosed	to	unauthorized	
individuals,	entities,	or	processes.	

In	an	 IoT	system	confidentiality	protection	policies	and	mechanisms	are	 responsible	 for	prohibiting	
people	or	systems	from	reading	data	or	control	messages	when	they	are	not	authorized	to	do	so.	

Confidentiality	 is	a	pre-requisite	for	a	secure	operation	especially	when	the	data	to	be	transmitted	
contains	 secret	 tokens,	 e.g.	 for	 access	 control.	 Confidentiality	 is	 also	 required	 to	 protect	 sensitive	
data,	which	may	include	PII	(e.g.	financial	information)	or	personal	data	(see	the	clause	on	Privacy).	

Many	 items	of	data	flowing	an	 IoT	system	need	to	be	treated	as	confidential	–	 in	the	hands	of	the	
wrong	recipient	the	data	could	be	used	for	criminal	acts	or	represent	inappropriate	use	of	personal	
data.	For	example,	IoT	motion	detection	sensors	could	reveal	whether	a	property	is	occupied	or	not	–	
which	could	be	used	by	thieves	to	target	the	property.	

Similar	 concerns	 relate	 to	 IoT	 smart	meters	 –	where	 even	 the	 frequency	 of	messages	 transmitted	
should	 not	 depend	 on	 the	 rate	 of	 electricity	 use,	 since	 this	 could	 reveal	 whether	 a	 property	 is	
occupied	or	not.	

	

	 VICINITY	Architectural	Design	 108	

	 	

	
Public	

	

	

Data	 integrity	 is	 the	property	 that	data	has	not	been	altered	or	destroyed	 in	an	unauthorized	and	
undetected	 manner.	 [ISO_19790:2012,	 3.58]	 Given	 that	 data	 is	 the	 basis	 on	 which	 IoT	 systems	
operate,	 tampering	 or	 destruction	 of	 data	 flowing	 or	 stored	 in	 the	 system	 could	 compromise	 the	
operation	of	the	system	and	lead	to	highly	undesirable	outcomes.	

Data	integrity	 is	vital	for	IoT	systems	to	ensure	that	the	data	used	for	decision-making	processes	in	
the	 system	and	executable	 software	has	 not	 been	 altered	by	 faulty	 or	 unauthorized	devices	 or	 by	
malicious	 actors.	 The	 protection	 of	 the	 integrity	 of	 the	 data	 and	 the	 executable	 software	 is	 a	 key	
requirement	to	ensure	the	security	of	the	IoT	system.	

In	 IoT	 deployments	 that	 comprise	 of	 multi-hop	 wireless	 sensor	 networks	 there	 is	 a	 risk	 that	
intermediate	nodes	may	alter	 the	data	and	this	can	have	 impact	on	the	 functioning	of	 the	system.	
For	example,	 an	 intermediate	node	may	 increase	 the	value	of	 the	 temperature	of	 a	 room	but	 this	
should	not	cause	the	air-conditioning	system	to	increase	the	amount	of	cooling.	

Safety	 is	 the	 freedom	 from	 risk	 which	 is	 not	 tolerable.	 Risk	 is	 the	 combination	 of	 probability	 of	
occurrence	of	harm	and	the	severity	of	that	harm.	Harm	includes	injury	or	damage	to	the	health	of	
people,	 or	 damage	 to	 property	 or	 the	 environment.	 Harm	 can	 be	 due	 to	 malfunction,	 failure,	 or	
accident.	While	prior	traits	describe	the	desired	behaviour	of	the	system	when	operating	correctly,	
Safety	 includes	 the	 consideration	 of	 failure	 modes	 with	 the	 intent	 of	 preventing,	 reducing	 or	
mitigating	the	potential	for	undesired	outcomes;	specifically,	damage,	harm	or	loss.	

Many	IoT	systems	are	deployed	in	contexts	or	operational	environments	where	damage,	loss,	injury	
or	death	might	result	 if	 failure	modes	are	not	adequately	addressed.	 In	many	operational	contexts,	
approval	to	operate	or	approval	to	connect	will	not	be	granted	if	safety	requirements	are	not	met.	

Even	 in	 contexts	 where	 compliance	 with	 safety	 standards	 is	 optional	 or	 voluntary	 rather	 than	
mandatory,	proper	 consideration	of	 safety	 factors	may	have	 significant	 impact	on	aspects	 such	as:	
continuity	of	operations,	reduction	of	loss,	prevention	of	injury	or	death,	insurance	premiums,	torts	
and	liability,	and	other	issues.	

IoT	contexts	where	safety	standards	or	requirements	might	need	to	be	considered	include	medical	or	
health	care	applications,	transport	such	as	aviation	and	automotive	applications,	consumer	products,	
buildings,	and	environment	monitoring.		Many	countries	will	have	specific	regulations	related	to	such	
applications.	

Protection	of	personally	 identifiable	 information	 (PII)	 is	a	 legal	or	 regulatory	 requirement	 in	most	
jurisdictions	 whenever	 an	 IoT	 system	 involves	 personally	 identifiable	 information	 anywhere	 in	 its	
operation.	

Privacy	 is	 the	 right	of	 individuals	 to	control	or	 influence	what	 information	 related	 to	 them	may	be	
collected	 and	 stored	 and	 by	 whom	 and	 to	 whom	 that	 information	 may	 be	 disclosed.	 (Based	 on	
ISO/TS	17574:2009,	 3.16)	 The	 concept	of	 privacy	overlaps,	 but	 does	not	 completely	 coincide,	with	
the	concept	of	data.	With	respect	to	data	protection	it	ensures	that	PII	is	not	processed	without	the	
informed	 consent	 of	 the,	 individual,	 unless	 otherwise	 permitted	 by	 law,	 and	 is	 not	 and	 is	 not	
disclosed	 to	 unauthorized	 entities.	 For	 IoT	 systems,	 entities	 include	 both	 people,	 machines	 and	
processes.	

The	principle	of	data	minimisation	applies	to	PII:	the	quantity	of	PII	collected	is	the	minimal	necessary	
to	support	the	application.	The	PII	which	is	necessarily	present	should	be	securely	deleted	when	no	
longer	needed.	This	protects	the	individual	and	minimizes	legal	risk	to	the	organization	using	the	PII.	
If	 PII	 is	 disclosed	 it	 must	 be	 based	 on	 prior	 informed	 consent	 given	 by	 the	 PII	 principal	 for	 the	
intended	purpose.		

	

	 VICINITY	Architectural	Design	 109	

	 	

	
Public	

	

	

Meta-data	may	 include	PII.	 	As	such,	organizations	processing	such	data	must	 take	steps	 to	ensure	
that	 any	 such	 processing	 conforms	 to	 applicable	 privacy/data	 protection	 legislation	 or	 regulation.		
This	includes	taking	steps	to	ensure	that	all	such	data	is	adequately	safeguarded	

Many	 IoT	 systems	 do	 not	 collect	 or	 interchange	 PII.	 However,	 any	 IoT	 system	which	 does	 collect,	
receive	 and/or	 interchange	 personal	 information	 needs	 to	 ensure	 that	 such	 IoT	 systems	 and	 their	
interactions	 with	 other	 IoT	 systems	 (or	 IT	 systems	 in	 general)	 are	 in	 full	 compliance	 with	 privacy	
protection	requirements	of	applicable	jurisdictions	domains.	

One	aspect	of	IoT	systems	is	that	the	nature	of	the	data	handled	by	the	system	can	be	unclear.		For	
example,	a	home	automation	IoT	system	may	appear	to	be	dealing	in	data	that	is	not	PII,	but	if	(say)	
the	electrical	 usage	data	of	 a	house	 is	 present	 in	 the	 system,	 if	 the	data	 can	be	 connected	with	 a	
specific	house,	it	is	likely	that	the	data	is	connected	with	specific	people	and	can	be	regarded	as	PII.	

IoT	systems	need	careful	analysis	to	understand	if	any	of	the	data	they	handle	is	or	is	potentially	PII.	
If	 PII	 is	 present,	 then	 the	 IoT	 system	 must	 be	 designed	 to	 meet	 appropriate	 data	 protection	
regulations	and	laws	in	the	relevant	jurisdiction(s).	

Many	 IoT	 applications	 involve	 end-users	 and	 the	 collection	 of	 specific	 data	 relating	 to	 them.	 	 For	
example,	traffic	speed	cameras	record	a	number	plate	and	often	an	image	of	the	driver’s	face.		This	
information	 is	 correlated	 with	 licensing	 records	 to	 allow	 fines	 to	 be	 levied.	 However,	 such	 data	
cannot	be	retained	beyond	a	pre-defined	time	and	should	not	be	made	available	for	other	purposes.		
Mobile	phone	location	can	be	tracked	and	while	this	can	be	useful	for	a	user	to	receive	information	
about	facilities	 in	the	area,	access	to	such	 information	should	be	controlled;	 it	may	be	required	for	
police	investigations	but	users	may	not	want	to	receive	adverts	for	local	venues.	

In	particular,	with	healthcare	monitoring	and	other	such	monitoring	of	specific	individuals	there	is	a	
need	for	the	data	to	be	provided	only	for	the	agreed	purpose	for	example	to	update	a	GP	or	personal	
healthcare	record	and	not	for	use	by	other	institutions	such	as	insurance	companies.	

Driver	 may	 be	 providing	 data	 for	 traffic	 monitoring	 systems	 (location	 and	 speed)	 allowing	 traffic	
congestion	to	be	reported	but	would	not	necessarily	expect	this	data	to	be	linked	to	an	employer’s	
system.	Similarly,	tracking	people	movement	 in	offices	may	be	possible	with	a	building	surveillance	
and	access	system	but	noting	times	of	rest	breaks	etc.,	may	not	have	been	part	of	the	purpose	of	the	
data	collection.	

Smart	metering	applications	are	another	example	where	an	individual	may	grant	access	to	data	for	a	
particular	purpose.	The	smart	meter	is	collecting	real-time	information	about	electricity	usage	in	the	
home	and	 transmitting	 it	 to	 the	electricity	utility,	who	may	use	 the	data	 for	a	variety	of	purposes,	
including	demand	management	and	differential	pricing.	It	is	clear	that	the	data	relates	to	the	people	
living	 in	 that	 home	 and	 may	 reveal	 significant	 details	 about	 their	 lives.	 	 It	 is	 necessary	 for	 the	
electricity	utility	organization	to	inform	the	householder	about	the	PII	they	are	gathering	and	to	be	
clear	about	its	use.	The	electricity	utility	also	needs	to	apply	appropriate	protection	to	the	data	(e.g.	
encrypt	data	streams	flowing	from	the	smart	meter),	and	apply	privacy	principles	to	the	processing	
of	 the	data,	 including	minimising	 the	data,	 anonymizing	 the	data	and	deleting	 the	data	as	 soon	as	
possible.	

Several	governments	and	group	of	states	has	issues	laws	based	on	the	European	directive	2016/680	
on	Privacy,	especially	to	protect	citizens	from	the	increasing	exposures	of	their	PII	in	the	daily	digital	
life	on	the	net.	A	set	of	laws	to	be	implemented	to	provide	rules	for	the	business	how	to	handle	PII	
and	make	it	certain	that	PII	is	not	exposed	more	than	the	business	relation	requires.	

Other	 characteristics	 –	 The	 "Data	 5Vs"	 of	 volume,	 velocity,	 veracity,	 variability	 and	 variety	 often	
apply	to	 IoT	systems.	The	Data	5Vs	derive	from	Big	Data	systems	–	but	 it	 is	often	the	case	that	 IoT	

	

	 VICINITY	Architectural	Design	 110	

	 	

	
Public	

	

	

systems	 are	 the	 source	 of	 data	which	 is	 large	 in	 volume,	 delivered	 at	 speed	 across	 network	 links,	
whose	veracity	needs	to	be	validated	(e.g.	due	to	malfunctioning	sensors),	which	can	vary	over	time	
and	can	contain	a	wide	variety	of	different	data	types	from	different	IoT	components.	

IoT	Systems	are	also	expected	 to	generate	 large	amounts	of	data	 from	diverse	 locations.	The	data	
may	be	aggregated	into	centralized	locations	or	it	may	be	stored	in	distributed	locations	(depending	
on	 the	 nature	 of	 the	 data,	 the	 processing	 required	 on	 the	 data	 and	 the	 communication	 link	
characteristics),	which	generates	a	need	to	appropriately	index,	store,	process	and	secure	the	data.	

A	 logistics	company	uses	big	data	analytics	 for	an	On-Road	 Integrated	Optimization	and	Navigation	
service.	The	system	uses	numerous	address	data	points,	plus	other	data	collected	during	deliveries,	
to	optimize	delivery	routes.	

Heterogeneity	 –	An	 IoT	 system	 typically	 is	 composed	of	 a	 diverse	 set	 of	 components	 and	physical	
entities	that	interact	in	various	ways.	

IoT	 is	 typically	 cross-system,	 cross-product,	 and	 cross-domain.	 Realizing	 the	 full	 potential	 of	 IoT	
requires	 interoperability	 between	 heterogeneous	 components	 and	 systems.	 This	 heterogeneity	
creates	numerous	challenges	for	the	resulting	IoT	systems.	

A	smart	container	using	RFID	tags	for	 identity	and	related	RFID	sensors	needs	 interworking	of	RFID	
systems	and	sensor	network	systems.	

Regulatory	 compliance	 –	 IoT	 systems,	 services,	 components	 and	 applications	 can	 be	 deployed	 in	
circumstances	which	 require	 adherence	 to	 a	 variety	 of	 laws,	 policies	 or	 regulations.	 Such	 support	
might	be	inherent	in	the	IoT	device	or	system,	or	might	require	specific	configuration,	programming,	
modification	or	extension	to	ensure	compliance.		

Additionally,	 there	might	 be	 a	 range	 of	 different	 granularity	 or	 levels	 of	 abstraction	 at	 which	 the	
regulations	are	applied	or	enforced.	

Regulations	 of	 relevance	 to	 IoT	 systems	 might	 take	 many	 forms,	 including	 regulations	 to	 assure	
interoperability,	 to	mandate	or	 constrain	 functionality	or	 capability,	 to	assess	 the	ability	of	 the	 IoT	
device	or	system	to	 function	 in	a	certain	usage	context	without	causing	damage,	and	to	 impose	at	
least	minimal	balance	between	contribution	 to	 the	 collective	good	and	 self-interest	on	 the	part	of	
system	owners	or	operators.	

Regulations	which	might	apply	to	an	IoT	context	include	one	or	more	of	the	following	categories:		

1) Safety	regulations	–	These	might	 include	flight	safety	standards	for	IoT	devices	operating	in	
aircraft,	or	regulations	covering	the	manufacture	and	sale	of	devices	intended	for	consumer	
use	 in	the	home,	regulations	 for	automotive	systems,	or	regulations	 for	devices	or	systems	
used	in	a	medical	context.		

2) RF	 related	 regulations	 –	 This	 category	 might	 include	 national	 or	 international	 regulations	
governing	 RF	 emanations,	 adherence	 to	 frequency	 band	 restrictions,	 signal	 strength,	
spurious	signals	(such	as	side	channels,	noise,	or	harmonics	produced	outside	of	the	device’s	
nominal	frequency	allocation),	etc.	

3) Consumer	protection	regulations–	These	might	include	national	and	international	regulations	
invoked	whenever	an	IoT	system	involves	a	consumer	anywhere	in	its	operation.	

In	 some	 IoT	 contexts,	 such	as	home	automation,	HVAC,	etc.	 another	 layer	of	 regulations	might	be	
imposed	in	the	form	of	building	codes	in	various	jurisdictions.	

	

	 VICINITY	Architectural	Design	 111	

	 	

	
Public	

	

	

While	 the	 area	 is	 still	 developing,	 it	 is	 quite	 possible	 that	 at	 some	point,	 there	will	 be	 regulations	
imposed	or	 referenced	by	 insurance	companies	as	part	of	 their	 risk	models	 for	pricing	coverage	of	
structures,	vehicles,	systems,	or	businesses	incorporating	IoT	systems	and	devices.	

Scalability	is	the	characteristic	of	a	system	to	continue	to	work	effectively	as	the	size	of	the	system,	
its	complexity	or	the	volume	of	work	performed	by	the	system	is	increased.	

IoT	systems	involve	various	elements	such	as	devices,	networks,	services,	applications,	users,	stored	
data,	data	traffic,	event	reports.		The	amount	of	each	of	these	elements	can	change	over	time	and	it	
is	important	that	the	IoT	system	continues	to	function	effectively	when	the	amounts	increase.	

One	 example	 of	 scalability	 is	 when	 the	 number	 of	 sensor	 devices	 attached	 to	 an	 IoT	 system	 is	
increased.	 If	 a	 system	 changes	 from	 monitoring	 temperature	 sensors	 in	 a	 single	 building	 to	
monitoring	 temperature	 sensors	on	all	 buildings	 in	a	 city	 there	will	 be	a	 significant	 increase	 in	 the	
volume	of	sensor	data	flowing	in	the	system,	in	the	volume	of	data	being	stored	in	databases,	in	the	
number	of	devices	handled	by	the	management	system,	and	in	the	number	of	temperature	readings	
processed	by	services	and	applications.	

Trustworthiness	is	the	degree	to	which	a	user	or	other	stakeholder	has	confidence	that	a	product	or	
system	will	behave	as	intended.	

Device,	data	and	service	trustworthiness	is	of	utmost	importance	for	IoT	systems	to	ensure	that	only	
trusted	devices	participate	in	the	decision-making	process	of	the	system,	resulting	in	the	provision	of	
trustworthy	applications.	Device	executable	processes	and	data	must	be	trusted	to	ensure	that	the	
device/system	operates	as	intended.	

Devices	 may	 become	 untrusted	 due	 to	 compromise,	 outdated	 software	 or	 firmware,	 or	 other	
reasons.	 	 IoT	 systems	 must	 be	 able	 to	 identify	 untrusted	 devices	 and	 must	 implement	 policies,	
processes,	 procedures	 and/or	 mechanisms	 (e.g.,	 quarantine)	 to	 address	 the	 issue	 of	 untrusted	
devices	on	the	system	

Where	 an	 IoT	 system	 that	 monitors	 the	 average	measurement	 of	 a	 room	 taking	 the	 mean	 value	
reported	by	x	sensors,	 if	y	sensors	report	false	values,	due	to	a	fault	or	malicious	programming	the	
resulting	 mean	 measurement	 will	 be	 false.	 Detection,	 assessment	 and	 potential	 exclusion	 of	
anomalous	readings	is	necessary	to	ensure	trustworthy	data.	

	

	 VICINITY	Architectural	Design	 112	

	 	

	
Public	

	

	

Appendix	C.	 Register	
	

Auto-configuration	of	VICINITY	Node,	40	

Configuration	data	flows,	28	

Global	neighbourhood	storage,	32	

High-availability	platform,	78	

IoT	object	description,	35	

IoT	object	metadata,	36	

IoT	object	templates,	36	

IoT	objects’	access,	25	

IoT	objects’	discovery,	23	

privacy	filter,	64	

profile,	32	

Semantic	data	flows,	28	

Semantic	 discovery	 and	 agent	 configuration	
platform,	21	

Semantic	discovery	of	IoT	objects,	42	

Semantic	meta-models,	35	

Semantic	 Model	 and	 Agent	 Configuration	
Storage,	32	

Sharing	Access	Rules,	34	

Syntactic	data	flows,	28	

Thing	Description,	23	

Thing	Ecosystem	Description,	23	

VICINITY	Cloud,	16,	17	

VICINITY	Communication	Node,	22	

VICINITY	Communication	server,	21	

VICINITY	Gateway	API,	22	

VICINITY	Gateway	API	Services,	21	

VICINITY	Neighbourhood	manager,	21	

VICINITY	Node,	17	

VICINITY	Node	configuration	distribution,	41	

VICINITY	Nodes,	16	

VICINITY	Nodes	Configurations,	34	

VICINITY	P2P	network,	18	

VICINITY	semantic	model,	36	

virtual	neighbourhood,	16	

Virtual	TED,	23	

	

