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Abstract—The Internet of Things is an increasingly complex
ecosystem, which includes many different tightly interwoven
domains. Therefore, the development of IoT applications and
devices has to consider interoperability between various commu-
nication systems, domains, platforms and protocols. Throughout
the whole development cycle continuous testing and validation
can help to identify and conquer system errors. To facilitate this
process, simulation is a suitable tool.

In this paper, we present an approach for simulation of large-
scale Internet of Things scenarios with Hardware-in-the-loop
integration. This was achieved by extending omnet++ to connect
a simulated model to real world devices.

Index Terms—Internet of Things, Simulation, Hardware-in-
the-loop

I. INTRODUCTION

Todays embedded and cyber-physical systems include parts

from different, tightly interwoven domains, such as software,

hardware, and mechanical parts. The increasing complexity

and the multidisciplinary nature of these systems demands

appropriate abstraction semantics to enable system design.

The complexity of developing cyber-physical systems is

addressed by model-based design. Even if a fully implemented

prototype is not available, it is possible to evaluate a virtual

prototype of the system in model-based design. This leads to

the possibility to reduce risks in an early system design phase

considerably and enable reuse of already evaluated or tested

models in later projects and products.[1] In cyber-physical

systems, which tend to be very large and complex, these

advantages of model-based systems engineering are improving

the fundamentals of the development process.[2]

The development of cyber-physical systems is a task, that

usually involves a lot of engineers, system architects and

other developers from different domains and disciplines. All

these stakeholders have to cooperate and communicate in a

fast and efficient way. For these communication channels the

old development process uses informal and mostly text-based

documents, which due to freedom of interpretation is prone to

errors. Models are replacing these documents more and more.

This leads to a new problem: Different domains and different

modeling levels also need different modeling languages and

techniques.

At high system level the language SysML is becoming more

and more popular to describe structure, behaviour and require-

ments of a complex system in a formal and understandable

way.[3] On lower system levels it is of great importance, to

describe components and their relations among each other in a

very detailed way. Therefore it is indispensable to use domain-

specific languages. For mechanical systems Modelica[4] is a

popular language and for electrical systems on a high level

SystemC/SystemC-AMS[5] is widely used.

A. The VICINITY project

VICINITY is an EU funded project under Horizon 2020.

The project started on the 1st of January 2016 and will

last 4 years. The lack of interoperability is considered as the

most important barrier to achieve the global integration of IoT

ecosystems across borders of different disciplines, vendors and

standards. Indeed, the current IoT landscape consists of a large

set of isolated islands that do not constitute a real internet,

preventing the exploitation of the huge potential expected by

ICT visionaries.[6]

To overcome this situation, VICINITY presents a virtual

neighborhood concept, which is a decentralized, bottom-up

and cross-domain approach that resembles a social network,

where users can configure their set ups, integrate standards

according to the services they want to use and fully control

their desired level of privacy. VICINITY then automatically

creates technical interoperability up to the semantic level. This

allows users without technical background to get connected to

the vicinity ecosystem in an easy and open way, fulfilling the

consumers needs. Furthermore, the combination of services

from different domains together with privacy-respectful user-

defined share of information, enables synergies among services

from those domains and opens the door to a new market of

domain-crossing services.

VICINITY’s approach will be demonstrated by a large-

scale demonstration connecting 8 facilities in 7 different coun-

tries. The demonstration covers various domains including

energy, building automation, health and transport. VICINITY’s

potential to create new, domain-crossing services will be

demonstrated by value added services such as micro-trading of

demand side management capabilities, AI-driven optimization

of smart urban districts and business intelligence over IoT.

Open calls are envisioned in the project to integrate further,

preferably public, IoT infrastructures and to deploy additional

added value services. This will not only extend the scale

of VICINITY demonstration, but also efficiently raise the

awareness of industrial communities of VICINITY and its

capabilities. [7]
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For the purpose of demonstration, this work focuses on one

of the four VICINITY pilots. However the described approach

is not limited to this use-case but instead can be applied rather

generic.

II. PROPOSED APPROACH

The TU Kaiserslautern is setting up a virtual environment to

simulate, emulate and validate the platform and the semantic

model in real life scenarios. The virtual environment is built

up with the simulation environment omnet++. In the simulated

environment like this, any use case of any size (even with

thousands of IoT devices) can be built and directly tested

with the real hardware integrated. This approach enables

completely new possibilities in terms of testing and validation

in early design phases. New devices or prototypes can be tested

regarding their behaviour as a part of a large network and

in different abstract scenarios. Also, a comparison between

simulation results and actual implementations can be of great

benefit. It is planned to simulate the whole VICINITY use

case for the Energy Ecosystem of Martim Longo[8] in the

virtual environment. For this purpose we model it in SysML.

A direct automatic transformation of the SysML models into a

mixed virtual and physical environment is under development

and will be finished by end of this year.

A lot of challenges have to be conquered in the context

of the developed simulation framework. One of the main

challenges was to integrate omnet++ with real hardware, to

enable a simulation with hardware in the loop. In this way,

we can already test big Internet of Things scenarios, even if

we only have a few sensors and actuators already available.

In the following chapter, we describe how this problem was

solved.

III. HARDWARE IN THE LOOP

The process of inserting real hardware in otherwise simu-

lated networks is often referred to as hardware in the loop sim-

ulation. Hardware in the loop simulations are especially useful

in an Internet of Things context, as creating and monitoring

test setups fully consisting of real hardware quickly becomes

too complex. It is often more feasible to set up a network

of simulated devices and connect to a small number of real

devices. An additional advantage of this approach is that the

internal state of the simulated devices and network components

can be monitored, saved and restored easily. It also enables

developers to compare the behavior of the real hardware, with

simulations used in earlier stages of the development process.

In the following two different approaches for connecting

real IoT devices to networks simulated using Omnet++ and

the INET framework will be presented. In both cases the

simulated network consists of a small number of virtual hosts

communicating with each other, while three Raspberry Pis act

as physical sensor nodes that communicate with the simulated

hosts.

Fig. 1. Event scheduling in Omnet++

A. Omnet++

As shown in figure 1, Omnet++ bases its simulations on

a central event queue. The event data structure consists of a

source, a destination, a reference to a payload and an arrival

time, which is used to simulate transmission delays between

modules. Entries in the event queue are sorted in ascending

order by their arrival time. The simulation scheduler [9], which

is usually run in a single thread, retrieves the next event from

the queue and waits for the difference between the current

simulation time and the event’s arrival time. As soon the

simulation time has caught up with the event’s arrival time,

the scheduler passes the event on to its destination module, by

calling the module’s event handler function. The event handler

function can then generate new events in response, and insert

them into the event queue by returning them to scheduler.

When control flow resumes in the scheduler, it continues with

the next event in the queue. In most cases simulation time

is decoupled from wall clock times, which means waiting for

event arrival times can be trivially implemented by increment-

ing the simulation time.

In order to perform hardware in the loop simulations, the

simulation has to be run at realtime speed and the simulation

time need to be synchronized with wall clock time. Further-

more it is necessary to insert packets from the host’s network

interfaces into the simulations event queue. As the control

flow is only handed over to a module, to process an event

for the module, it is not possible to capture packets from the

host systems network card directly inside a module. Instead,

the scheduler has to be modified to monitor network cards

and to handle incoming packets, while it waits until the next

event can be processed. Even though it is possible to use the

serializers and deserializers provided by the INET framework

to convert packets from the real network into events for the

simulation and vice versa, the deserializers can only invoked

from inside a module’s event handler function, as they will

attempt to use a reference to the calling module as the event’s

source module. Therefore, they can not be used directly by

the scheduler. To work around this limitation, the raw bytes

making up the packet can wrapped inside an event, which

is then added to the event queue to be send to a simulation

module. The module can than use a deserializer to convert

the bytes into an event containing a packet for the simulated



Fig. 2. Capturing a packet addressed to the simulated network

network. The arrival time for these events has to be chosen

carefully to preserve the overall order of packets across the two

networks. Both of the schedulers presented here assume, that

the simulation runs with real time speed, so that the scheduler

can use the current simulation time as arrival time for the

packets from the real network. If the simulation runs slower

than real time the packets could be stored until the simulation

has caught up, but the devices in the real network are unaware

of the slower time inside the simulation and will likely run into

timeouts. The reverse direction, forwarding packets from the

simulated network to the real network, is simple: Modules can

use a serializer to turn an event from the simulated network

into a packet for the real network. The packet can then be

handed over to the scheduler, which can forward it into the

real network.

The routed approach (presented in III-B) uses modules

already included the INET framework, to forward IP traffic

[10] to and from a physical network interface of the host

computer running the simulation into the simulated network.

As this technique only works on IP traffic, it is independent

from the underlying network layers used in the real network,

but it also limits the simulated network to routers and hosts

interconnected with point-to-point IP links. Devices in the real

network have to be configured to use to the host computer

as gateway for the IP subnets of the simulated network.

Depending on the device used it might not always be possible

to set up static routes, other than the default gateway.

The switched approach (presented in III-C) works on the

ethernet layer and requires additional custom simulation mod-

ules, as well as a custom scheduler. It allows connecting

multiple wired network interfaces of the host system, to the

simulated network. In contrast to the previous approach the

simulated network can have an arbitrary topology, and can

use any link layer protocol, as long as the modules interfacing

with the real network are ethernet based. This implementation

is intended to be used primarily on linux systems, as it relies

heavily on the tap interfaces and network bridges provided by

the linux kernel.

B. Routed Approach

This setup simulates a routed network consisting only of

IP point-to-point links. It is based on the INET framework’s

extserver example. The example uses the ExtInterface module

and the cSocketRTScheduler class already included in the

framework’s examples.

As shown in figure 2 the scheduler uses the PCAP library

[11], which is also used by network monitoring tools like

e.g. tcpdump or Wireshark, to capture IP packets from one

of the host computer’s network interfaces, while it waits for

the arrival time of the next event. It sets up a PCAP filter

to restrict the captured packets to those addressed to subnets

inside the simulated networks. If a packet has been captured

the scheduler interrupts waiting for the next event, wraps the

IP packet in an ExtFrame message, which has a ExtInterface

module as destination, and inserts the message into the event

queue. The current simulation time is used as arrival time.

Since it is assumed that the simulations runs at a speed close

to real time, this should by definition preserve correct ordering

of events inside the simulation. After the new event was added,

the scheduler has to check whether, the event it was initially

waiting for, still is the earliest event in the queue. In most

cases the newly added ExtFrame will be the earliest event, as

it has been added using current simulation time as arrival time.

The scheduler will then send the ExtFrame to the ExtInterface

module, by passing it to the module’s message handler method.

The handler method then uses a deserializer to create an

IPv4Datagram message, which it then sends into the simulated

network via its point-to-point link.

Figure 3 shows how IP packets routed to the ExtInterface,

having destination addresses from a subnet in the real network

are serialized and handed over to the ExtInterface module. The

ExtInterface module uses a raw socket on the host system’s

network interface to send the packet into the real network.

PCAP and raw sockets can be used on any platform, as

they do not require any special features from the host systems

network stack. Therefore this approach is highly platform

independent. Additionally, PCAP’s integrated filter feature also

provides an efficient way to efficiently filter out traffic that

is intended for the simulated network. However, the major

drawback of this approach is that does not allow arbitrary

network structures inside the simulation and is limited to

IPv4 based unicast traffic. As a result the protocols relying

on multicast or broadcast packets for device discovery can

not be used. Furthermore, ARP [12] requests and responses



Fig. 3. Forwarding a packet from the simulation to the real network

to and from the simulated network are not forwarded, which

means that devices in the real network can not use ARP to

determine to which hardware addresses packets for hosts in-

side the simulated network should be sent. Instead, it requires

the additional configuration of static routes to the simulated

network, using the host system as gateway, on each device in

the real network. Especially on simpler low-cost IoT devices

these configurations options might not be easily accessible.

Additional the scheduler and the interface module are currently

only able to process IPv4 packages, which poses a problem

as IPv6 [13] and the IPv6-based W6LoPan [14] become

increasingly important for IoT-applications.

C. Switched Approach

The switched network simulation has been designed specif-

ically to avoid the limitations exhibited by the extserver

example.

Instead of PCAP it utilizes the linux kernel’s build in tap

interface [15] and network bridge support. Towards the kernels

network stack tap interfaces behave exactly like any other

network interfaces does. This means they can be used in

more advanced network setups involving routing, firewalls,

traffic shaping and network bridges. In contrast to regular

network interfaces the ethernet frames generated for them by

the network stack are not passed on to a physical network

card. Instead, they are forwarded to special buffer, which can

be accessed by userspace programs via a special device file.

This enables the program to read any raw ethernet frames

which are received by the tap interface and to send out frames

by writing them to the buffer. Tools like OpenVPN usually use

tap interfaces to connect a layer-2 virtual private network to

the kernel’s network stack. Network bridges [16] can be used

to connect two or more network interfaces of a linux system

with each other as if they were ports on a virtual switch. This

means if a packet is received by one interface it will be sent out

again on the other interface, if the bridge’s mac address table

indicates that the destination can be reached from the other

interface. Additional the kernel creates a bridge interface for

the bridge which acts as an additional virtual network card,

connected to the virtual switch.

Similar to the routed approach presented previously, the tap

interface can not be read directly by an Omnet++ module,

as the control flow only enters a module for a short period

of time in order to process an event from the event queue.

Therefore, it is not possible to use blocking reads on the tap

interface. On the other hand it is also not feasible to use

non-blocking reads in side a module, as it is not guaranteed

that the scheduler will call the handler code in the module

on a regular basis. This is solved by moving the actual

input and output code into the scheduler, while using module

for serialization and deserialization, as the serializers and

deserializers can only operate from within a module context.

As shown in figure 4 this implemented using two custom

modules: TapRTScheduler and TapInterface. Additionally, the

EtherTap module is required to wrap the TapInterface module

and add an Ethernet-MAC module provided by INET, that

converts frames to and from the physical layer encoding,

required for INET’s Ethernet simulation.

The TapInterface modules provide interface parameter, spec-

ifying the name of the tap interface the module is connected to.

During module initialization of the simulation, the scheduler

initializes all tap interfaces and stores them in a hashmap

mapping the TapInterface modules to the file descriptors of

the corresponding tap interfaces.

Each scheduling cycle starts with TapRTScheduler reading

the next event from the event queue and using the arrival

time of the event to determine if and how long it should

delay handing the event over to the receiving module. It is

important to keep in mind that the scheduler calculates current

simulation time as wall clock time that has passed since the

simulation has been started or resumed, as it assumes that the

simulation runs with realtime speed. If there is no next event,

the scheduler attempts to delay for LONG MAX seconds. In

case the difference between simulation time and the event’s

arrival time is zero or negative the scheduler directly proceeds

to call the receiving modules handler method. For positive

differences the TapRTScheduler has to delay until the simu-

lation time has reached the event’s arrival time. The actual

delay is implemented using the select-syscall to wait until

either the required amount of time has passed or a packet



Fig. 4. Forwarding a packet into the simulation

has arrived on one the tap interfaces. Additionally the method

is required to update the user interface periodically during the

delay. This mechanism interleaves waiting for the next event,

reading packets from the tap interfaces and reacting to user

interface events.

Any received Ethernet frame is passed to the corresponding

TapInterface module for deserialization. Similar to the cSock-

etRTScheduler the raw bytes, representing a full Ethernet

frame, are wrapped inside an ExtFrame message and enqueued

in the event queue, as the deserializer can only be used from

inside a module’s message handling method. The ExtFrame

is created using the current simulation time as arrival time

and the TapInterface module associated with the file descriptor

from which the frame was read as destination.

As soon as the control flow returns from the delay method to

the actual scheduler, there are two possible cases to consider:

The first case is that there were no Ethernet frames available

at any file descriptor, and therefore the entire difference to the

event’s arrival time has been spent waiting for data. In this

case the scheduler can directly pass the event to the receiving

modules message handling method. In the second case it is

too early to hand the event over to the receiving module and

implying that at least one Ethernet frame was read and one new

ExtFrame event, with an earlier arrival time has been added

to the queue. The arrival time will always be earlier for these

events, as the current simulation time has been used to create

the ExtFrame, while waiting for the previously selected event

to arrive at its destination module. Therefore, the scheduler

has to enqueue the initially selected event again and dequeue

the earliest ExtFrame. In both cases the scheduler can pass

the event to its destination module, for processing and the next

scheduling cycle starts as soon as the control flow returns from

the modules message handler method.

When a TapInterface receives a ExtFrame, it unpacks the

raw Ethernet frame inside and uses a EthernetSerializer to

deserialize it into an EtherFrame instance. After that the

EtherMAC that is part of the EtherTap module wrapping

the TapInterface module encapsulates the frame in an Ether-

PhyFrame, which represents Ethernet physical layer encoding

and sends it into the simulated network.

Forwarding packets from the simulated network to the real

network is a much simpler process. As shown in figure 5 any

EtherPhyFrame received by a EtherTap module is decapsulated

by the modules EtherMAC- The TapInterface then serializes

the EtherFrame into raw byte representing an ethernet frame,

which can to be written directly to a tap interface. Next the

scheduler writes the frame to the file descriptor associated

with the module. This results in the Ethernet frame being

send out of the tap network interface and therefore out of any

physical network card connected to the same bridge interface

as the tap. It is important to keep in mind at this point, that

since the bridge interface acts as a transparent switch, it is not

necessary to change the mac addresses in the Ethernet frame.

The simulated and the real network form a single broadcast

domain.

This implementation limits the platform compatibility to

linux based systems. Windows and MacOS do not offer tap

interfaces and while it is possible to add them using third

party software, the API for accessing the interface is different

and would therefore require platform dependent adjustments

to the scheduler. Additionally the network bridging may not

be available using these third party solutions.

An other disadvantage using tap interfaces is that the

network has to be simulated down to ethernet level, which

requires significantly more resources than just simulating IP

point to point links. On the other hand it may be desirable to

be able to simulate arbitrary network topologies, or protocols

not based on-top of the IP-protocol, which would require a

switch to an ethernet level simulation anyway.

The major advantage of this approach is that it combines the

simulated and the real network into a single broadcast domain.

This does not only enable arbitrarily structured IP networks on

top of it, but also eliminates the need for setting static routes

into the simulated network on the real devices. Additionally,

it also enables the usage of broadcast and multicast based

discovery protocols.

Unlike in the PCAP based approach, the network packets

transmitted through the tap interface are actually processed

by the host systems network stack, which allows making

use of wide variety of tools offered by the linux network



Fig. 5. Forwarding a packet to the real network

ecosystem. For example, it is possible to setup sophisticated

firewalls using iptables to limit the communication between

different the simulated and the real network. It also possible

to use traffic shaping tools such as tc to restrict the bandwidth

between the simulated on the real network or implement a

basic traffic shaping. Furthermore, the same tools that are

commonly used for identifying network problems, such as

ping, traceroute, or tcpdump can now be applied to find

problems in the simulated network as well.

IV. CONCLUSION AND OUTLOOK

In this paper we demonstrated how real hardware can

be integrated into an omnet++-simulation environment. A

demonstrator with two real sensors and a virtual actuator has

been built to show how the simulation can interact with the

real world.

For performance evaluation a large scale scenario has to be

completed and a suitable metric has to be developed. This is

currently in progress.

Using standard interfaces provided by the linux network

stack enables us to make use of wide variety of existing tools

in the linux networking ecosystem, such as firewalls, traffic-

shapers, QoS-implementations and tools for traffic analysis.

Additionally network bridges can also be used as a layer 2

connection between multiple Omnet++ simulations allowing

us to simulate different sections of a larger network in parallel,

without having to implement a dedicated Omnet++ scheduler

for parallel or distributed simulation.

The vision is to integrate this approach into a platform for

modeling and simulation of big Internet of Things scenarios,

like a complete VICINITY pilot site with thousands of nodes,

gateways, sensors and actuators. This platform is currently

under development. It enables parallel and distributed simula-

tion in an hierarchical way. On the low level simulation side,

we are integrating domain-specific languages, like Modelica

and SystemC-AMS, for finer simulation results over FMI-

Interfaces.[17]

Furthermore we are currently developing a tool to close

the gap between the high-level systems modeling language

SysML[3] and an executable simulation model, which can

be generated and simulated very fast and easy in an early

development phase. Thus, errors in the system design can be

identified and conquered in an earlier design phase.
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K. Dickerson, R. Garcıa-Castro, and V. Oravec, “Drivers, standards and
platforms for the iot: Towards a digital vicinity.”

[7] Vicinity project website. [Online]. Available: http://vicinity2020.eu/
[8] Martim longo (portugal) - neighbourhood grid ecosys-

tem. [Online]. Available: http://vicinity2020.eu/vicinity/content/
martim-longo-po-neighbourhood-grid-ecosystem

[9] Omnet++ library: cscheduler class reference. [Online]. Available: https:
//www.omnetpp.org/doc/omnetpp/api/classomnetpp 1 1cScheduler.html

[10] Internetwork protocol specification. [Online]. Available: https://www.
rfc-editor.org/ien/ien54.pdf

[11] Manpage of pcap. [Online]. Available: http://www.tcpdump.org/
manpages/pcap.3pcap.html

[12] An ethernet address resolution protocol. [Online]. Available: https:
//tools.ietf.org/html/rfc826

[13] Internet protocol, version 6 (ipv6) specification. [Online]. Available:
https://tools.ietf.org/html/rfc2460

[14] Transmission of ipv6 packets over ieee 802.15.4 networks. [Online].
Available: https://tools.ietf.org/html/rfc4944

[15] Universal tun/tap device driver. [Online]. Available: https://www.kernel.
org/doc/Documentation/networking/tuntap.txt

[16] Linux network bridges. [Online]. Available: https://wiki.linuxfoundation.
org/networking/bridge

[17] Modelica association project, the fmi standard. [Online]. Available:
https://www.fmi-standard.org/


