
Hardware-in-the-loop Simulation for
Internet of Things Scenarios

Johannes Kölsch, Christopher Heinz, Sebastian Schumb, Christoph Grimm
TU Kaiserslautern

Erwin-Schrödinger-Straße 1, 67663 Kaiserslautern, Germany
Email: koelsch|heinz|s schumb10|grimm@cs.uni-kl.de

Abstract—The Internet of Things is an increasingly complex
ecosystem, which includes many different tightly interwoven
domains. Therefore, the development of IoT applications and
devices has to consider interoperability between various commu-
nication systems, domains, platforms and protocols. Throughout
the whole development cycle continuous testing and validation
can help to identify and conquer system errors. To facilitate this
process, simulation is a suitable tool.

In this paper, we present an approach for simulation of large-
scale Internet of Things scenarios with Hardware-in-the-loop
integration. This was achieved by extending omnet++ to connect
a simulated model to real world devices.

Index Terms—Internet of Things, Simulation, Hardware-in-
the-loop

I. INTRODUCTION

Todays embedded and cyber-physical systems include parts
from different, tightly interwoven domains, such as software,
hardware, and mechanical parts. The increasing complexity
and the multidisciplinary nature of these systems demands
appropriate abstraction semantics to enable system design.

The complexity of developing cyber-physical systems is
addressed by model-based design. Even if a fully implemented
prototype is not available, it is possible to evaluate a virtual
prototype of the system in model-based design. This leads to
the possibility to reduce risks in an early system design phase
considerably and enable reuse of already evaluated or tested
models in later projects and products.[1] In cyber-physical
systems, which tend to be very large and complex, these
advantages of model-based systems engineering are improving
the fundamentals of the development process.[2]

The development of cyber-physical systems is a task, that
usually involves a lot of engineers, system architects and
other developers from different domains and disciplines. All
these stakeholders have to cooperate and communicate in a
fast and efficient way. For these communication channels the
old development process uses informal and mostly text-based
documents, which due to freedom of interpretation is prone to
errors. Models are replacing these documents more and more.
This leads to a new problem: Different domains and different
modeling levels also need different modeling languages and
techniques.

At high system level the language SysML is becoming more
and more popular to describe structure, behaviour and require-
ments of a complex system in a formal and understandable
way.[3] On lower system levels it is of great importance, to

describe components and their relations among each other in a
very detailed way. Therefore it is indispensable to use domain-
specific languages. For mechanical systems Modelica[4] is a
popular language and for electrical systems on a high level
SystemC/SystemC-AMS[5] is widely used.

A. The VICINITY project

VICINITY is an EU funded project under Horizon 2020.
The project started on the 1st of January 2016 and will

last 4 years. The lack of interoperability is considered as the
most important barrier to achieve the global integration of IoT
ecosystems across borders of different disciplines, vendors and
standards. Indeed, the current IoT landscape consists of a large
set of isolated islands that do not constitute a real internet,
preventing the exploitation of the huge potential expected by
ICT visionaries.[6]

To overcome this situation, VICINITY presents a virtual
neighborhood concept, which is a decentralized, bottom-up
and cross-domain approach that resembles a social network,
where users can configure their set ups, integrate standards
according to the services they want to use and fully control
their desired level of privacy. VICINITY then automatically
creates technical interoperability up to the semantic level. This
allows users without technical background to get connected to
the vicinity ecosystem in an easy and open way, fulfilling the
consumers needs. Furthermore, the combination of services
from different domains together with privacy-respectful user-
defined share of information, enables synergies among services
from those domains and opens the door to a new market of
domain-crossing services.

VICINITY’s approach will be demonstrated by a large-
scale demonstration connecting 8 facilities in 7 different coun-
tries. The demonstration covers various domains including
energy, building automation, health and transport. VICINITY’s
potential to create new, domain-crossing services will be
demonstrated by value added services such as micro-trading of
demand side management capabilities, AI-driven optimization
of smart urban districts and business intelligence over IoT.
Open calls are envisioned in the project to integrate further,
preferably public, IoT infrastructures and to deploy additional
added value services. This will not only extend the scale
of VICINITY demonstration, but also efficiently raise the
awareness of industrial communities of VICINITY and its
capabilities. [7]

For the purpose of demonstration, this work focuses on one
of the four VICINITY pilots. However the described approach
is not limited to this use-case but instead can be applied rather
generic.

II. PROPOSED APPROACH

The TU Kaiserslautern is setting up a virtual environment to
simulate, emulate and validate the platform and the semantic
model in real life scenarios. The virtual environment is built
up with the simulation environment omnet++. In the simulated
environment like this, any use case of any size (even with
thousands of IoT devices) can be built and directly tested
with the real hardware integrated. This approach enables
completely new possibilities in terms of testing and validation
in early design phases. New devices or prototypes can be tested
regarding their behaviour as a part of a large network and
in different abstract scenarios. Also, a comparison between
simulation results and actual implementations can be of great
benefit. It is planned to simulate the whole VICINITY use
case for the Energy Ecosystem of Martim Longo[8] in the
virtual environment. For this purpose we model it in SysML.
A direct automatic transformation of the SysML models into a
mixed virtual and physical environment is under development
and will be finished by end of this year.

A lot of challenges have to be conquered in the context
of the developed simulation framework. One of the main
challenges was to integrate omnet++ with real hardware, to
enable a simulation with hardware in the loop. In this way,
we can already test big Internet of Things scenarios, even if
we only have a few sensors and actuators already available.
In the following chapter, we describe how this problem was
solved.

III. HARDWARE IN THE LOOP

The process of inserting real hardware in otherwise simu-
lated networks is often referred to as hardware in the loop sim-
ulation. Hardware in the loop simulations are especially useful
in an Internet of Things context, as creating and monitoring
test setups fully consisting of real hardware quickly becomes
too complex. It is often more feasible to set up a network
of simulated devices and connect to a small number of real
devices. An additional advantage of this approach is that the
internal state of the simulated devices and network components
can be monitored, saved and restored easily. It also enables
developers to compare the behavior of the real hardware, with
simulations used in earlier stages of the development process.

In the following two different approaches for connecting
real IoT devices to networks simulated using Omnet++ and
the INET framework will be presented. In both cases the
simulated network consists of a small number of virtual hosts
communicating with each other, while three Raspberry Pis act
as physical sensor nodes that communicate with the simulated
hosts.

Fig. 1. Event scheduling in Omnet++

A. Omnet++

As shown in figure 1, Omnet++ bases its simulations on
a central event queue. The event data structure consists of a
source, a destination, a reference to a payload and an arrival
time, which is used to simulate transmission delays between
modules. Entries in the event queue are sorted in ascending
order by their arrival time. The simulation scheduler [9], which
is usually run in a single thread, retrieves the next event from
the queue and waits for the difference between the current
simulation time and the event’s arrival time. As soon the
simulation time has caught up with the event’s arrival time,
the scheduler passes the event on to its destination module, by
calling the module’s event handler function. The event handler
function can then generate new events in response, and insert
them into the event queue by returning them to scheduler.
When control flow resumes in the scheduler, it continues with
the next event in the queue. In most cases simulation time
is decoupled from wall clock times, which means waiting for
event arrival times can be trivially implemented by increment-
ing the simulation time.

In order to perform hardware in the loop simulations, the
simulation has to be run at realtime speed and the simulation
time need to be synchronized with wall clock time. Further-
more it is necessary to insert packets from the host’s network
interfaces into the simulations event queue. As the control
flow is only handed over to a module, to process an event
for the module, it is not possible to capture packets from the
host systems network card directly inside a module. Instead,
the scheduler has to be modified to monitor network cards
and to handle incoming packets, while it waits until the next
event can be processed. Even though it is possible to use the
serializers and deserializers provided by the INET framework
to convert packets from the real network into events for the
simulation and vice versa, the deserializers can only invoked
from inside a module’s event handler function, as they will
attempt to use a reference to the calling module as the event’s
source module. Therefore, they can not be used directly by
the scheduler. To work around this limitation, the raw bytes
making up the packet can wrapped inside an event, which
is then added to the event queue to be send to a simulation
module. The module can than use a deserializer to convert
the bytes into an event containing a packet for the simulated

Fig. 2. Capturing a packet addressed to the simulated network

network. The arrival time for these events has to be chosen
carefully to preserve the overall order of packets across the two
networks. Both of the schedulers presented here assume, that
the simulation runs with real time speed, so that the scheduler
can use the current simulation time as arrival time for the
packets from the real network. If the simulation runs slower
than real time the packets could be stored until the simulation
has caught up, but the devices in the real network are unaware
of the slower time inside the simulation and will likely run into
timeouts. The reverse direction, forwarding packets from the
simulated network to the real network, is simple: Modules can
use a serializer to turn an event from the simulated network
into a packet for the real network. The packet can then be
handed over to the scheduler, which can forward it into the
real network.

The routed approach (presented in III-B) uses modules
already included the INET framework, to forward IP traffic
[10] to and from a physical network interface of the host
computer running the simulation into the simulated network.
As this technique only works on IP traffic, it is independent
from the underlying network layers used in the real network,
but it also limits the simulated network to routers and hosts
interconnected with point-to-point IP links. Devices in the real
network have to be configured to use to the host computer
as gateway for the IP subnets of the simulated network.
Depending on the device used it might not always be possible
to set up static routes, other than the default gateway.

The switched approach (presented in III-C) works on the
ethernet layer and requires additional custom simulation mod-
ules, as well as a custom scheduler. It allows connecting
multiple wired network interfaces of the host system, to the
simulated network. In contrast to the previous approach the
simulated network can have an arbitrary topology, and can
use any link layer protocol, as long as the modules interfacing
with the real network are ethernet based. This implementation
is intended to be used primarily on linux systems, as it relies
heavily on the tap interfaces and network bridges provided by
the linux kernel.

B. Routed Approach

This setup simulates a routed network consisting only of
IP point-to-point links. It is based on the INET framework’s

extserver example. The example uses the ExtInterface module
and the cSocketRTScheduler class already included in the
framework’s examples.

As shown in figure 2 the scheduler uses the PCAP library
[11], which is also used by network monitoring tools like
e.g. tcpdump or Wireshark, to capture IP packets from one
of the host computer’s network interfaces, while it waits for
the arrival time of the next event. It sets up a PCAP filter
to restrict the captured packets to those addressed to subnets
inside the simulated networks. If a packet has been captured
the scheduler interrupts waiting for the next event, wraps the
IP packet in an ExtFrame message, which has a ExtInterface
module as destination, and inserts the message into the event
queue. The current simulation time is used as arrival time.
Since it is assumed that the simulations runs at a speed close
to real time, this should by definition preserve correct ordering
of events inside the simulation. After the new event was added,
the scheduler has to check whether, the event it was initially
waiting for, still is the earliest event in the queue. In most
cases the newly added ExtFrame will be the earliest event, as
it has been added using current simulation time as arrival time.
The scheduler will then send the ExtFrame to the ExtInterface
module, by passing it to the module’s message handler method.
The handler method then uses a deserializer to create an
IPv4Datagram message, which it then sends into the simulated
network via its point-to-point link.

Figure 3 shows how IP packets routed to the ExtInterface,
having destination addresses from a subnet in the real network
are serialized and handed over to the ExtInterface module. The
ExtInterface module uses a raw socket on the host system’s
network interface to send the packet into the real network.

PCAP and raw sockets can be used on any platform, as
they do not require any special features from the host systems
network stack. Therefore this approach is highly platform
independent. Additionally, PCAP’s integrated filter feature also
provides an efficient way to efficiently filter out traffic that
is intended for the simulated network. However, the major
drawback of this approach is that does not allow arbitrary
network structures inside the simulation and is limited to
IPv4 based unicast traffic. As a result the protocols relying
on multicast or broadcast packets for device discovery can
not be used. Furthermore, ARP [12] requests and responses

Fig. 3. Forwarding a packet from the simulation to the real network

to and from the simulated network are not forwarded, which
means that devices in the real network can not use ARP to
determine to which hardware addresses packets for hosts in-
side the simulated network should be sent. Instead, it requires
the additional configuration of static routes to the simulated
network, using the host system as gateway, on each device in
the real network. Especially on simpler low-cost IoT devices
these configurations options might not be easily accessible.
Additional the scheduler and the interface module are currently
only able to process IPv4 packages, which poses a problem
as IPv6 [13] and the IPv6-based W6LoPan [14] become
increasingly important for IoT-applications.

C. Switched Approach

The switched network simulation has been designed specif-
ically to avoid the limitations exhibited by the extserver
example.

Instead of PCAP it utilizes the linux kernel’s build in tap
interface [15] and network bridge support. Towards the kernels
network stack tap interfaces behave exactly like any other
network interfaces does. This means they can be used in
more advanced network setups involving routing, firewalls,
traffic shaping and network bridges. In contrast to regular
network interfaces the ethernet frames generated for them by
the network stack are not passed on to a physical network
card. Instead, they are forwarded to special buffer, which can
be accessed by userspace programs via a special device file.
This enables the program to read any raw ethernet frames
which are received by the tap interface and to send out frames
by writing them to the buffer. Tools like OpenVPN usually use
tap interfaces to connect a layer-2 virtual private network to
the kernel’s network stack. Network bridges [16] can be used
to connect two or more network interfaces of a linux system
with each other as if they were ports on a virtual switch. This
means if a packet is received by one interface it will be sent out
again on the other interface, if the bridge’s mac address table
indicates that the destination can be reached from the other
interface. Additional the kernel creates a bridge interface for
the bridge which acts as an additional virtual network card,
connected to the virtual switch.

Similar to the routed approach presented previously, the tap
interface can not be read directly by an Omnet++ module,
as the control flow only enters a module for a short period
of time in order to process an event from the event queue.
Therefore, it is not possible to use blocking reads on the tap
interface. On the other hand it is also not feasible to use
non-blocking reads in side a module, as it is not guaranteed
that the scheduler will call the handler code in the module
on a regular basis. This is solved by moving the actual
input and output code into the scheduler, while using module
for serialization and deserialization, as the serializers and
deserializers can only operate from within a module context.
As shown in figure 4 this implemented using two custom
modules: TapRTScheduler and TapInterface. Additionally, the
EtherTap module is required to wrap the TapInterface module
and add an Ethernet-MAC module provided by INET, that
converts frames to and from the physical layer encoding,
required for INET’s Ethernet simulation.

The TapInterface modules provide interface parameter, spec-
ifying the name of the tap interface the module is connected to.
During module initialization of the simulation, the scheduler
initializes all tap interfaces and stores them in a hashmap
mapping the TapInterface modules to the file descriptors of
the corresponding tap interfaces.

Each scheduling cycle starts with TapRTScheduler reading
the next event from the event queue and using the arrival
time of the event to determine if and how long it should
delay handing the event over to the receiving module. It is
important to keep in mind that the scheduler calculates current
simulation time as wall clock time that has passed since the
simulation has been started or resumed, as it assumes that the
simulation runs with realtime speed. If there is no next event,
the scheduler attempts to delay for LONG MAX seconds. In
case the difference between simulation time and the event’s
arrival time is zero or negative the scheduler directly proceeds
to call the receiving modules handler method. For positive
differences the TapRTScheduler has to delay until the simu-
lation time has reached the event’s arrival time. The actual
delay is implemented using the select-syscall to wait until
either the required amount of time has passed or a packet

Fig. 4. Forwarding a packet into the simulation

has arrived on one the tap interfaces. Additionally the method
is required to update the user interface periodically during the
delay. This mechanism interleaves waiting for the next event,
reading packets from the tap interfaces and reacting to user
interface events.

Any received Ethernet frame is passed to the corresponding
TapInterface module for deserialization. Similar to the cSock-
etRTScheduler the raw bytes, representing a full Ethernet
frame, are wrapped inside an ExtFrame message and enqueued
in the event queue, as the deserializer can only be used from
inside a module’s message handling method. The ExtFrame
is created using the current simulation time as arrival time
and the TapInterface module associated with the file descriptor
from which the frame was read as destination.

As soon as the control flow returns from the delay method to
the actual scheduler, there are two possible cases to consider:
The first case is that there were no Ethernet frames available
at any file descriptor, and therefore the entire difference to the
event’s arrival time has been spent waiting for data. In this
case the scheduler can directly pass the event to the receiving
modules message handling method. In the second case it is
too early to hand the event over to the receiving module and
implying that at least one Ethernet frame was read and one new
ExtFrame event, with an earlier arrival time has been added
to the queue. The arrival time will always be earlier for these
events, as the current simulation time has been used to create
the ExtFrame, while waiting for the previously selected event
to arrive at its destination module. Therefore, the scheduler
has to enqueue the initially selected event again and dequeue
the earliest ExtFrame. In both cases the scheduler can pass
the event to its destination module, for processing and the next
scheduling cycle starts as soon as the control flow returns from
the modules message handler method.

When a TapInterface receives a ExtFrame, it unpacks the
raw Ethernet frame inside and uses a EthernetSerializer to
deserialize it into an EtherFrame instance. After that the
EtherMAC that is part of the EtherTap module wrapping
the TapInterface module encapsulates the frame in an Ether-
PhyFrame, which represents Ethernet physical layer encoding
and sends it into the simulated network.

Forwarding packets from the simulated network to the real
network is a much simpler process. As shown in figure 5 any
EtherPhyFrame received by a EtherTap module is decapsulated
by the modules EtherMAC- The TapInterface then serializes
the EtherFrame into raw byte representing an ethernet frame,
which can to be written directly to a tap interface. Next the
scheduler writes the frame to the file descriptor associated
with the module. This results in the Ethernet frame being
send out of the tap network interface and therefore out of any
physical network card connected to the same bridge interface
as the tap. It is important to keep in mind at this point, that
since the bridge interface acts as a transparent switch, it is not
necessary to change the mac addresses in the Ethernet frame.
The simulated and the real network form a single broadcast
domain.

This implementation limits the platform compatibility to
linux based systems. Windows and MacOS do not offer tap
interfaces and while it is possible to add them using third
party software, the API for accessing the interface is different
and would therefore require platform dependent adjustments
to the scheduler. Additionally the network bridging may not
be available using these third party solutions.

An other disadvantage using tap interfaces is that the
network has to be simulated down to ethernet level, which
requires significantly more resources than just simulating IP
point to point links. On the other hand it may be desirable to
be able to simulate arbitrary network topologies, or protocols
not based on-top of the IP-protocol, which would require a
switch to an ethernet level simulation anyway.

The major advantage of this approach is that it combines the
simulated and the real network into a single broadcast domain.
This does not only enable arbitrarily structured IP networks on
top of it, but also eliminates the need for setting static routes
into the simulated network on the real devices. Additionally,
it also enables the usage of broadcast and multicast based
discovery protocols.

Unlike in the PCAP based approach, the network packets
transmitted through the tap interface are actually processed
by the host systems network stack, which allows making
use of wide variety of tools offered by the linux network

Fig. 5. Forwarding a packet to the real network

ecosystem. For example, it is possible to setup sophisticated
firewalls using iptables to limit the communication between
different the simulated and the real network. It also possible
to use traffic shaping tools such as tc to restrict the bandwidth
between the simulated on the real network or implement a
basic traffic shaping. Furthermore, the same tools that are
commonly used for identifying network problems, such as
ping, traceroute, or tcpdump can now be applied to find
problems in the simulated network as well.

IV. CONCLUSION AND OUTLOOK

In this paper we demonstrated how real hardware can
be integrated into an omnet++-simulation environment. A
demonstrator with two real sensors and a virtual actuator has
been built to show how the simulation can interact with the
real world.

For performance evaluation a large scale scenario has to be
completed and a suitable metric has to be developed. This is
currently in progress.

Using standard interfaces provided by the linux network
stack enables us to make use of wide variety of existing tools
in the linux networking ecosystem, such as firewalls, traffic-
shapers, QoS-implementations and tools for traffic analysis.
Additionally network bridges can also be used as a layer 2
connection between multiple Omnet++ simulations allowing
us to simulate different sections of a larger network in parallel,
without having to implement a dedicated Omnet++ scheduler
for parallel or distributed simulation.

The vision is to integrate this approach into a platform for
modeling and simulation of big Internet of Things scenarios,
like a complete VICINITY pilot site with thousands of nodes,
gateways, sensors and actuators. This platform is currently
under development. It enables parallel and distributed simula-
tion in an hierarchical way. On the low level simulation side,
we are integrating domain-specific languages, like Modelica
and SystemC-AMS, for finer simulation results over FMI-
Interfaces.[17]

Furthermore we are currently developing a tool to close
the gap between the high-level systems modeling language
SysML[3] and an executable simulation model, which can

be generated and simulated very fast and easy in an early
development phase. Thus, errors in the system design can be
identified and conquered in an earlier design phase.

ACKNOWLEDGEMENT

As a part of the VICINITY project, this work has been
supported by EU (European Union) program Horizon 2020
under grant agreement number 688467.

REFERENCES

[1] P. Derler, E. A. Lee, and A. S. Vincentelli, “Modeling cyber–physical
systems,” Proceedings of the IEEE, vol. 100, no. 1, pp. 13–28, 2012.

[2] D. Gianni, A. D’Ambrogio, and A. Tolk, Modeling and Simulation-
Based Systems Engineering Handbook. CRC Press, 2014.

[3] Object management group, specification of sysml 1.4. [Online].
Available: http://www.omg.org/spec/SysML/1.4/PDF

[4] M. Association. The modelica language. [Online]. Available: https:
//www.modelica.org/

[5] Accelera systems initiative, systemc. [Online]. Available: http://www.
accellera.org/downloads/standards/systemc

[6] A. Mynzhasova, C. Radojicic, C. Heinz, J. Kölsch, C. Grimm, J. Rico,
K. Dickerson, R. Garcıa-Castro, and V. Oravec, “Drivers, standards and
platforms for the iot: Towards a digital vicinity.”

[7] Vicinity project website. [Online]. Available: http://vicinity2020.eu/
[8] Martim longo (portugal) - neighbourhood grid ecosys-

tem. [Online]. Available: http://vicinity2020.eu/vicinity/content/
martim-longo-po-neighbourhood-grid-ecosystem

[9] Omnet++ library: cscheduler class reference. [Online]. Available: https:
//www.omnetpp.org/doc/omnetpp/api/classomnetpp 1 1cScheduler.html

[10] Internetwork protocol specification. [Online]. Available: https://www.
rfc-editor.org/ien/ien54.pdf

[11] Manpage of pcap. [Online]. Available: http://www.tcpdump.org/
manpages/pcap.3pcap.html

[12] An ethernet address resolution protocol. [Online]. Available: https:
//tools.ietf.org/html/rfc826

[13] Internet protocol, version 6 (ipv6) specification. [Online]. Available:
https://tools.ietf.org/html/rfc2460

[14] Transmission of ipv6 packets over ieee 802.15.4 networks. [Online].
Available: https://tools.ietf.org/html/rfc4944

[15] Universal tun/tap device driver. [Online]. Available: https://www.kernel.
org/doc/Documentation/networking/tuntap.txt

[16] Linux network bridges. [Online]. Available: https://wiki.linuxfoundation.
org/networking/bridge

[17] Modelica association project, the fmi standard. [Online]. Available:
https://www.fmi-standard.org/

http://www.omg.org/spec/SysML/1.4/PDF
https://www.modelica.org/
https://www.modelica.org/
http://www.accellera.org/downloads/standards/systemc
http://www.accellera.org/downloads/standards/systemc
http://vicinity2020.eu/
http://vicinity2020.eu/vicinity/content/martim-longo-po-neighbourhood-grid-ecosystem
http://vicinity2020.eu/vicinity/content/martim-longo-po-neighbourhood-grid-ecosystem
https://www.omnetpp.org/doc/omnetpp/api/classomnetpp_1_1cScheduler.html
https://www.omnetpp.org/doc/omnetpp/api/classomnetpp_1_1cScheduler.html
https://www.rfc-editor.org/ien/ien54.pdf
https://www.rfc-editor.org/ien/ien54.pdf
http://www.tcpdump.org/manpages/pcap.3pcap.html
http://www.tcpdump.org/manpages/pcap.3pcap.html
https://tools.ietf.org/html/rfc826
https://tools.ietf.org/html/rfc826
https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc4944
https://www.kernel.org/doc/Documentation/networking/tuntap.txt
https://www.kernel.org/doc/Documentation/networking/tuntap.txt
https://wiki.linuxfoundation.org/networking/bridge
https://wiki.linuxfoundation.org/networking/bridge
https://www.fmi-standard.org/

	Introduction
	The VICINITY project

	Proposed Approach
	Hardware In The Loop
	Omnet++
	Routed Approach
	Switched Approach

	Conclusion and Outlook
	References

