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Abstract. In the software engineering field, every software product
is delivered with its pertinent associated tests which verify its correct
behaviour. Besides, there are several approaches which, integrated in the
software development process, deal with software testing, such as unit
testing or behaviour-driven development. However, in the ontology engi-
neering field there is a lack of clearly defined testing processes that can be
integrated into the ontology development process. In this paper we pro-
pose a testing framework composed by a set of activities (i.e., test design,
implementation and execution), with the goal of checking whether the
requirements identified are satisfied by the formalization and analysis of
their expected behaviour. This testing framework can be used in differ-
ent types of ontology development life-cycles, or concerning other goals
such as conformance testing between ontologies. In addition to this, we
propose an RDF vocabulary to store, publish and reuse these test cases
and their results, in order to allow traceability between the ontology, the
test cases and their requirements. We validate our approach by integrat-
ing the testing framework into an ontology engineering process where an
ontology network has been developed following agile principles.
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1 Introduction

The increasing uptake of semantic technologies and ontologies has led during
the past years to the study of new ontology development methodologies, from
agile (e.g., [1,12]) to collaborative approaches (e.g., [15,17]). The majority of
these methodologies take into account the importance of functional1 ontology
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requirements refer to the functionalities the software system should have.

c© Springer Nature Switzerland AG 2018
C. Faron Zucker et al. (Eds.): EKAW 2018, LNAI 11313, pp. 114–130, 2018.
https://doi.org/10.1007/978-3-030-03667-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03667-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-03667-6_8


Requirements Behaviour Analysis for Ontology Testing 115

requirements [16] which, written in natural language as competency questions
[8], define the knowledge the ontology has to represent.

Nowadays, in software engineering it is inconceivable to deliver a software
product without its pertinent tests which guarantee that it fulfils all its require-
ments. Besides, there are several approaches integrated into the software devel-
opment process whose aim is to test the software. Unit testing [9], which vali-
dates that each unit of the software performs as designed, and behaviour-driven
development [19], which focuses on the behaviour the software product is imple-
menting, are examples of these approaches.

However, in ontology engineering there is a lack of clearly defined testing pro-
cesses in order to be able to ascertain whether an ontology satisfies the require-
ments. Even though there are approaches to generate tests (e.g., [10,13]), they do
not cover the entire testing workflow or are limited to checking for the presence
of axioms, which is not enough to validate a requirement.

Inspired by the software engineering evaluation approaches, we propose a
testing framework composed by a set of activities (i.e., test design, implementa-
tion and execution) with the aim of facilitating the generation and execution of
tests associated to functional requirements of OWL ontologies. We propose to
extract the behaviour of the requirements and to formalize it into test expres-
sions. These test expressions are implemented into a set of axioms with the aim
of validating if the ontology satisfies the intended knowledge produced by the
requirements. The goal of this implementation is to solve the limitations of the
actual testing approaches by analysing ontology behaviour in different situations
to ascertain if the expected knowledge is present, absent or produces a conflict,
rather than only checking whether an axiom is entailed by the ontology.

This proposed framework can be integrated into several ontology develop-
ment life-cycles to support ontology development (e.g., to verify ontologies by
users or ontology engineers) and also to carry out conformance analysis. In addi-
tion to this, we also propose an RDF vocabulary to represent the tests cases in
order to provide traceability between them and the associated requirements.

The paper is organized as follows. Section 2 presents the related work on
ontology testing. Section 3 presents the proposed testing activities and Sect. 4
describes the integration of these activities into ontology engineering workflows.
Finally, Sect. 5 shows the evaluation of the approach and Sect. 6 presents the
conclusions obtained and gives an overview on future work.

2 Related Work

Several approaches which defend the importance of verifying ontologies through
their ontology requirements have been developed to the date. Each of these
approaches focuses on some testing aspect: methodological background, test
implementation, or traceability between the ontology and the tests.

Regarding the methodological background, Vrandevcic and Gangemi [18]
introduced the idea of testing ontologies by borrowing ideas from software
engineering, proposing techniques such as testing with axioms and negations
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or formalizing competency questions. Another work presented by Peroni is
SAMOD [12], an agile ontology development methodology that uses tests to val-
idate the ontology. These two approaches are focused on methodological aspects
but do not mention how to implement the tests or how to maintain traceability.

Concerning test implementation, Keet and Lawrynowicz proposed a test-
driven development (TDD) of ontologies [10] in which the competency questions
are formalized into axioms and added to the ontology if they are not present.
Dealing also with test implementation, the OntologyTest tool [7] allows a user to
define and execute a set of tests to check the functional requirements of an ontol-
ogy; these tests are stored in an XML file for future reuse. Another approach
to implement test cases is the one presented by Ren et al. [13]; in this work the
authors use natural language processing to analyse competency questions writ-
ten in controlled natural language from where they create competency question
patterns that could be automatically tested in the ontology. Finally, Neuhaus
introduced Scone2, a tool for scenario-based ontology evaluation, which is based
on Cucumber3 and uses controlled natural language to define ontology scenarios
which create mock individuals. Even though all these approaches are focused
on test implementation, neither of them mention how to maintain traceability
between the tests and the ontology nor do they describe the process to integrate
ontology testing into ontology engineering methodologies in order to create the
tests from the ontological requirements.

To conclude, Blomqvist et al. [2] presented an agile approach which includes
a methodological background and introduces in rough outlines several types of
tests concerned with the verification of the requirements implementation and the
exposure to faults. However, this methodology neither explains how to implement
these tests nor when each type of test should be used.

Even if all these works introduce testing through requirements, none of them
proposes a complete testing framework which covers all the mentioned testing
aspects. Moreover, the majority of these works do not allow the reuse of the
tests, limiting the testing process only to a single ontology.

3 Ontology Testing Framework

This paper introduces an ontology testing framework to systematize the gen-
eration and execution of tests cases from functional requirements. In the liter-
ature, ontology testing approaches are usually divided into two activities, i.e.,
test implementation and test execution. In this approach we propose a new one,
test design. The motivation of this new activity came up due to the ambiguity
and assumptions inherent to the natural language [4] and to the fact that dif-
ferent people may be in charge of the design and implementation of tests. As a
consequence, in this design activity the knowledge intended to be produced by
every requirement is identified, e.g., from the requirement “A device can have a
status” is expected a relation between two concepts in the ontology. From this
2 https://bitbucket.org/malefort/scone.
3 https://docs.cucumber.io/.
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point on, we are going to call this expected knowledge as the desired behaviour of
the requirement, which is concrete and unambiguous. In this design activity we
provide a collection of test expressions according to the requirements behaviour,
and in the test implementation activity we provide possible implementations for
each one of the test expressions, which are ready to be executed on an ontology.

In this work we focus on the analysis of the behaviour of the ontology in
different situations to verify that certain knowledge is modelled in the ontology,
rather than simply checking the presence or absence of particular axioms using
semantic reasoners. This is due to the fact that the use of semantic reasoners
is not sufficient to validate if a requirement is satisfied. For instance, if we sup-
pose that a requirement asks for a minimum cardinality of 1, the correspondent
ontology already has the axiom A � B � ≤2R.C, and we check the presence
of the axiom A � B � ≤1R.C the reasoner will state that it is entailed, even
though that is not what the requirement asks for. In this situation we would like
to have a tool to determine that what is entailed in the ontology is not what the
requirement claims. Because of this reason, it is needed to go beyond the result
provided by the simple execution of reasoners. Another case where the checking
for the presence of axioms using semantic reasoners is not sufficient is a situation
in which an ontology has a large hierarchy of concepts. In this case, in which
it is tedious to manually determine whether a certain concept belongs to that
hierarchy, if some classes are not named the reasoner will not detect them in the
hierarchy. The analysis of ontology behaviours aims to solve these problems.

In addition to the testing activities, we propose an RDF vocabulary4 to
store the generated test cases and to provide traceability between them and
their associated requirements. To improve the readability, we assumed that A
and B represent ontology classes, P represents an ontology property, a, a1, b1
and b2 represent individuals and num represents a numerical value.

3.1 Test Design

During this activity the desired behaviour of each requirement is extracted.
In order to carry out this extraction, we provide a set of possible types of
requirements according to their desired behaviour. Besides, each of these types
of requirements is associated with a test expression, which represents the desired
behaviour in a formal language based on the OWL Manchester Syntax5. In order
to identify the different types of requirements, we analysed the 248 requirements
of the following ontologies6: the VICINITY ontologies7, the Video Game ontol-
ogy [11] and the SAREF ontology8. We extracted the behaviour of each of these
requirements and selected the ones that appear more than once or that we expect

4 https://w3id.org/def/vtc.
5 https://www.w3.org/TR/owl2-manchester-syntax/.
6 At the time of writing, the authors only had access to the requirements of these

ontologies.
7 http://vicinity.iot.linkeddata.es/vicinity/.
8 https://w3id.org/saref.

https://w3id.org/def/vtc
https://www.w3.org/TR/owl2-manchester-syntax/
http://vicinity.iot.linkeddata.es/vicinity/
https://w3id.org/saref


118 A. Fernández-Izquierdo and R. Garćıa-Castro

to appear frequently. Table 1 shows the identified types of requirements, their
description and their corresponding test expressions. It is worth noting that, even
though the greater part of the analysed requirements was categorized with only
one type, a requirement could be categorized with more than one and, therefore,
could be associated to more than one test expression.

Table 1. Types of requirements according to their behaviour

ID Type of requirement Description Test expression

T1 Equivalence
Equivalence between two classes
that have the same intention

A EquivalentTo B

C
la
ss
-r
el
at
ed

T2 Subsumption

Definition the relation between the
class and the (super)class it belongs
to. This subsumption is strict, the
two classes cannot be equivalent

A SubClassOf B

T3 Disjointness Definition of two disjoint concepts A disjointWith B

T4
Property between two con-
cepts

Definition of a property between
two concepts

P Domain A, P Range B, A P B

T5 Symmetry
A property must be symmetric, this
means, the property has itself as an
inverse

A Symmetric(P) B

P
ro
pe

rt
y-
re
la
te
d

T6 Maximum cardinality
Definition of the maximum cardi-
nality of a given property between
two concepts

A SubClassOf P max [num] B

T7 Minimum cardinality
Definition of the minimum cardinal-
ity of a given property between two
concepts

A SubClassOf P min [num] B

T8 Exact cardinality
Definition of the cardinality be-
tween two concepts

A SubClassOf P exactly [num] B

T9 Intersection
Definition of an intersection be-
tween concepts with a cardinality

A SubClassOf P min/max/exactly
[num] (B and C)

In
di
vi
du

al
-

re
la
te
d

T10 Definition of an individual
Definition of an individual of a
given type

a type A

The output of this activity is an RDF document where the test cases are
stored using the proposed testing vocabulary. In this vocabulary, each test case
design stores the associated requirement URI, the description of the requirement,
and the desired behaviour specified by the test expressions.

Listing 1.1 shows an example of a test case design generated from the require-
ment which states “An IoT gateway is a digital entity”. This requirement is cat-
egorized with one requirement type: Subsumption (T2). Because of the fact that
this test does not have URIs related to the ontology in which the test cases are
going to be executed, it can be reused in other ontologies. To improve the read-
ability of the paper, Table 2 shows the prefixes and their associated namespaces
that are used through the paper.

Listing 1.1. Example of test case design

:testDesignPlatform2 a vtc:TestCaseDesign;

vtc:isRelatedToRequirement vicinity:platform2;

dc:description "An IoT gateway is a digital entity ";

vtc:desiredBehaviour "<Gateway > subClassOf <DigitalEntity >".
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3.2 Test Implementation

In order to implement the tests to verify if a desired behaviour is satisfied, we
propose a procedure were each test expression is formalized into a precondition,
a set of auxiliary term declarations and a set of assertions to check the behaviour.
During this procedure it is also carried out a mapping between the term identified
in the test design and the actual term in the ontology where the ontology is
going to be executed. The testing framework proposed in this work provides
implementation for every test expression identified in Table 1.

Table 2. Summary of the prefixes used through the paper

Prefix Namespace

core http://iot.linkeddata.es/def/core

dc http://purl.org/dc/terms/

vicinity http://vicinity.iot.linkeddata.es/vicinity/re-quirements/report-core.html

vtc http://w3id.org/def/vtc

The precondition is a SPARQL query which checks whether the terms
involved in the ontology requirement are defined in the ontology. In order to
execute the tests, these terms need to be declared in the ontology. Otherwise,
the test fails and the requirement is not satisfied.

The axioms to declare auxiliary terms are a set of temporary axioms
added to the ontology to declare the auxiliary terms needed to carry out the
assertions. After the addition of these axioms the reasoner is executed and, in
order to be able to check the behaviour, the ontology needs to be consistent.

Finally, the assertions to check the behaviour are a set of pairs of axioms
and expected results that represent different ontology scenarios. For each pair,
the axiom is temporary added to the ontology to force a scenario, after which
the reasoner is executed. The expected result determines if the ontology status
(i.e., inconsistent ontology, unsatisfiable class or consistent ontology) after the
addition is the expected one in case the requirement was satisfied. If all the
status concur with the expected status, then the requirement is satisfied.

The output of this activity is an RDF document where the test cases are
stored using the proposed vocabulary. In this vocabulary, each test case imple-
mentation stores the associated test design; the test preparation, which rep-
resents auxiliary terms declaration; and the corresponding test assertions. An
excerpt of a test case is shown in Listing 1.2. Due to the lack of space the figure
only shows the test precondition, which verifies that the classes involved in the
test exist in the ontology; the test preparation, which adds the auxiliary terms
needed for the execution of the test; and one of the assertions, which adds a class
that will be wrong if the ontology satisfies the requirement.

http://iot.linkeddata.es/def/core
http://purl.org/dc/terms/
http://vicinity.iot.linkeddata.es/vicinity/re-quirements/report-core.html
http://w3id.org/def/vtc
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Listing 1.2. Example of test case implementation

:testImplPlatform2 a vtc:TestCaseImplementation;

vtc:isRelatedToDesign :testDesignPlatform2;

vtc:precondition "ASK{ Class(core:Gateway), Class(core:DigitalEntity )}";

vtc:hasPreparation :preparation1;

vtc:hasAssertion [: assertion1; :assertion2; :assertion3 ].

:preparation1 a vtc:TestPreparation;

dc:description "Declaration of the auxiliary terms";

vtc:testAxioms """: NoGateway rdf:type owl:Class;

owl:complementOf core:Gateway.

:NoDigitalEntity rdf:type owl:Class;

owl:complementOf core:DigitalEntity. """.

:assertion1 a vtc:TestAssertion;

dc:description "Test assertion 1";

vtc:testAxioms """ core:GatewayNoDigitalEntity rdf:type owl:Class;

rdfs:subClassOf core:Gateway;

rdfs:subClassOf :NoDigitalEntity .""";

vtc:hasAssertionResult vtc:Unsatisfiable .

3.2.1 Class-Related Test Expressions

Table 3 shows the implementations to verify equivalence (T1), subsumption (T2),
and disjointness (T3) between two concepts.

To check equivalence between two concepts, we define a set of auxiliary
terms, i.e., the classes that complement A (¬A) and B (¬B). After their defini-
tion, we define a set of assertions that force the ontology to present unsatisfiable
classes or inconsistencies. The first one, associated to axiom ‘E 3’ in Table 3,
generates a class A’ that is defined as a subclass of class B and ¬A. If the ontol-
ogy satisfies the requirement, this addition causes an unsatisfiable class due to
the fact that the reasoner would infer that A’ is subclass of A and ¬A. The
second assertion, associated to axiom ‘E 4’, generates a class A’ that is defined
as a subclass of class A and ¬B. If the ontology satisfies the requirement, this
addition causes an unsatisfiable class due to the fact that the reasoner would
infer that A’ is subclass of B and ¬B. The last assertion, associated to axiom
‘E 5’, generates a class A’ that is defined as a subclass of class A and B. If the

Table 3. Test implementation for class-related test expressions

Preconditions
Axioms to declare
auxiliary terms

Assertions to test the ontology behaviour

Axiom
Expected status

after adding the axiom

T
1 Class A and

class B exist

(E 1) Declaration of ¬A

(E 2) Declaration of ¬B

(E 3) A’ � ¬A � B Unsatisfiable class

(E 4) A’ � A � ¬B Unsatisfiable class

(E 5) A’ � A � B Consistent ontology

T
2 Class A and

class B exist

(S 1) Declaration of ¬A

(S 2) Declaration of ¬B

(S 3) A’ � ¬A � B Consistent ontology

(S 4) A’ � A � ¬B Unsatisfiable class

(S 5) A’ � A � B Consistent ontology

T
3 Class A and

class B exist

(D 1) Declaration of ¬A

(D 2) Declaration of ¬B

(D 3) A’ � ¬A � B Consistent ontology

(D 4) A’ � A � ¬B Consistent ontology

(D 5) A’ � A � B Unsatisfiable class
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ontology satisfies the requirement, this assertion causes a consistent ontology
due to the fact that there is no problem if A’ is subclass of A and B.

We follow the same procedure for each of the test expressions, defining sce-
narios which cause different behaviours in the ontology.

In the case that the requirement involves subsumption between concepts
and the ontology meets the requirement, axiom ‘S 4’ in Table 3 causes an unsat-
isfiable class. Axioms ‘S 3’ and ‘S 5’ are expected to entail consistent ontologies.

Finally, if the requirement involves disjoint classes and the ontology satisfies
the requirement, axiom ‘D 5’ in Table 3 causes an unsatisfiable class. Axioms ‘D
3’ and ‘D 4’ are expected to entail consistent ontologies.

3.2.2 Property-Related Test Expressions

By the same token, Table 4 shows the implementations related to properties
between concepts (T4), symmetry (T5), cardinalities (T6, T7, T8), and inter-
section (T9).

In order to check a property between two concepts A and B, a new
individual is added to the ontology. The assertion associated to axiom ‘Pst 6’
in Table 4 defines a link between two individuals. If the range is defined, this
assertion causes an inconsistent ontology due to the fact that the reasoner infers
that one individual is of type B and its complement.

In order to check symmetry, the assertions add two properties between
different individuals. The assertion associated to axiom ‘Sy 6’ defines a prop-
erty between individuals that does not cause any inconsistency. However, the
assertion associated to axiom ‘Sy 7’ defines a property between individuals that
should not satisfy the constraint and causes an inconsistent ontology.

In order to check cardinality, the assertions define axioms that add new car-
dinality constraints to the ontology. Depending on the type of cardinality, differ-
ent axioms cause an unsatisfiable class. If the requirement involves a maximum
cardinality and the ontology satisfies the requirement, axiom ‘Max 3’ causes
an unsatisfiable class. However, if the requirement involves a minimum car-
dinality and the ontology satisfies the requirement, axiom ‘Min 2’ causes an
unsatisfiable class. Finally, if the requirement involves an exact cardinality
and the ontology satisfies the requirement, axioms ‘Ex 2’ and ‘Ex 3’ cause an
unsatisfiable class.

Finally, in order to check intersection between B and C, the first assertion
follows the same principles than the maximum cardinality tests. In addition,
assertions ‘I 10’ and ‘I 11’ force an axiom which does not satisfy the cardinality
nor does it consider the intersection. These last assertions should lead to an con-
sistent ontology, due to the fact that although they do not satisfy the cardinality
constraint they do not satisfy the intersection.

3.2.3 Individual-Related Test Expressions

Regarding the individual-related test expressions, Table 5 defines the implemen-
tation for the test related to the definition of an individual a of type A (T10).
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Table 4. Test implementation for the property-related test expressions

Preconditions
Axioms to declare
auxiliary terms

Assertions to test the ontology behaviour

Axioms
Expected status
after adding the

axiom

T
4

Class A, class

B and property

P exist

(Pst 1) Declaration of ¬B

(Pst 6) Assertion P(a1, nob1) Inconsistent ontology

(Pst 2) Assertion A’ � A

(Pst 3) Assertion A’(a1)

(Pst 4) Assertion
¬B(nob1)

(Pst 5) Assertion A’ �
∃P.{nob1}

T
5

Class A, class

B and property

P exist

(Sy 1) Assertion B(b1)
(Sy 6) Assertion P(a1, b1) Consistent ontology

(Sy 2) Declaration A’ � A

(Sy 3) Assertion A’ �
∀P.{b1}

(Sy 7) Assertion P(b2, a1) Inconsistent ontology
(Sy 4) Assertion A’(a1)

(Sy 5) Assertion B(b2)

T
6

Class A, class

B and property

P exist

(Max 1) Declaration of

A’ � A

(Max 2) Assertion A’ ≤
(num-1)R.B

Consistent ontology

(Max 3) Assertion A’ ≥
(num+1)R.B

Unsatisfiable class

(Max 4) Assertion A’ ≤
(num)R.B

Consistent ontology

(Max 5) Assertion A’ ≥
(num)R.B

Consistent ontology

T
7

Class A, class

B and property

P exist

(Min 1) Declaration of

A’ � A

(Min 2) Assertion A’ ≤ (num-
1)R.B

Unsatisfiable class

(Min 3) Assertion A’ ≥
(num+1)R.B

Consistent ontology

(Min 4) Assertion A’ ≤
(num)R.B

Consistent ontology

(Min 5) Assertion A’ ≥
(num)R.B

Consistent ontology

T
8

Class A, class

B and property

P exist

(Ex 1) Declaration of

A’ � A

(Ex 2) Assertion A’ ≤ (num-
1)R.B

Unsatisfiable class

(Ex 3) Assertion A’ ≥
(num+1)R.B

Unsatisfiable class

(Ex 4) Assertion A’ ≤
(num)R.B

Consistent ontology

(Ex 5) Assertion A’ ≥
(num)R.B

Consistent ontology

T
9

Class A, class

B and property

P exist

(I 1) Declaration of A’ � A

(I 2) Declaration of ¬B

(I 3) Declaration of ¬C

(I 4) Assertion A’ ≤ (num-
1).B � C

Consistent ontology

(I 5) Assertion A’ ≥
(num+1)R.B � C

Unsatisfiable class

(I 6) Assertion A’ ≤
(num)R.B � C

Consistent ontology

(I 7) Assertion A’ ≥
(num)R.B � C

Consistent ontology

(I 8) Assertion A’ ≤
(num)R.B � C

Consistent ontology

(I 9) Assertion A’ ≥
(num)R.B � C

Consistent ontology

(I 10) Assertion A’ ≥
(num+1)R.B

Consistent ontology

(I 11) Assertion A’ ≥
(num+1)R. C

Consistent ontology
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To check it, axiom ‘Id 3’ first identifies if there is a problem with the definition
of the individual. To conclude, axiom ‘Id 4’ declares that the individual a is of
type complement of A; in this case the assertion causes an inconsistency, due to
the fact that an individual cannot be of type A and its complement.

Table 5. Test implementation for the individual-related test expression

Preconditions
Axioms to declare
auxiliary terms

Assertions to test the ontology behaviour

Axioms
Expected status

after adding the axiom

T
1
0 Class A and indi-

vidual a1 exist

(Id1) Declaration of ¬A

(Id2) Declaration of B

(Id3) Assertion
B(a1)

Consistent ontology

(Id4) Assertion
¬A(a1)

Inconsistent ontology

3.3 Test Execution

The test execution activity consists of three parts: the execution of the query
which represents the preconditions, the addition of the axioms which declare the
auxiliary terms, and the addition of the assertions. After the addition of each
axiom, the reasoner is executed to report the status of the ontology. The addition
of the auxiliary axioms needs to always lead to a consistent ontology. However,
in the case of the assertions, the agreement between the reasoner status after the
addition of all the axioms and the status indicated in the test implementation
determines whether the ontology satisfies the desired behaviour.

We distinguish three possible results, i.e., undefined, if the ontology does
not pass the preconditions; passed, if the ontology passes the preconditions
and the results of the assertions are the expected ones; and not passed, if the
ontology passes the preconditions but the results of the assertions are not the
expected ones. The separation between not passed and undefined tests distin-
guishes between an incorrect behaviour of the ontology, where the constraints or
characteristics of the tested concepts are not defined, and an absent behaviour,
where the tested concepts are not defined. Algorithm 1 summarizes the steps
needed to execute each test case. If the test case is passed, then the require-
ment is satisfied; otherwise, the requirement is not satisfied. Moreover, the not
passed result implies that the requirement is not correctly implemented, while
and undefined result implies that the requirement is not taken into account in
the ontology implementation.
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Algorithm 1. Test case execution
Data: Ontology and test case implementation
Result: Test case result

1 if precondition = true then
2 add(ontology, auxiliary terms);
3 if checkOntologyStatus() = consistent then
4 for assertion in assertions do
5 add(ontology, assertion.axioms);
6 if checkOntologyStatus() �= assertion.result

then
7 result = not passed;
8 exit loop;
9 end

10 remove(ontology, assertion.axioms);
11 result = passed;
12 end
13 else
14 result = not passed;
15 end
16 remove(ontology, auxiliary terms);
17 else
18 result = undefined;
19 end

The output of this activity is an RDF document where the results of each
test case are stored using the proposed vocabulary. In this vocabulary, each test
case result stores the URI of the ontology that is tested, the test implementation
and the result of the execution on the ontology.

Listing 1.3. Example of test case result

:testResultPlatform2 a vtc:TestCaseResult;

vtc:hasExecution :execution1;

vtc:testResult vtc:Undefined.

:execution1 a vtc:Execution;

vtc:executedOn <http ://iot.linkeddata.es/def/core/ontology.ttl >;

vtc:isRelatedToImplementation :testImplPlatform2 .

4 Testing process

The proposed testing activities can be used in several test-last ontology devel-
opment life-cycles, such as in waterfall [5] or in agile [12] ones. In the case of
waterfall ontology development, the tests are generated and executed at the end
of the development process to validate it. On the other hand, in an agile approach
the development of the ontology is incremental based on development iterations
or sprints and the tests are generated and executed after each iteration.

Moreover, the testing activities can also be integrated into test-first
approaches, such as Test-Driven Development (TDD), where the tests are
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generated before the ontology implementation in order to guide the devel-
opment. Inspired by software engineering, we support another test-first
approach: Behaviour-Driven Development (BDD). This approach, introduced
in the Scone project9, focuses on the behaviour the ontology needs to imple-
ment. In software engineering, BDD is focused on defining specifications of the
behaviour of the system, in a way that they can be automated [14]. The main
goal of BDD, which is generally regarded as the evolution of TDD, is to get exe-
cutable specifications of a system that can be used by the users. Figures 1 and 2
depict the workflows of these test-last and test-first approaches. The application
of this approach to ontology engineering may help ontology engineers to be more
conscious about the ontology behaviour expected by the users.

In addition to the integration into the ontology development, the proposed
testing activities can also be used for other goals, such as to verify the confor-
mance that two ontologies have according to their requirements or to execute
regression tests. Because the test design is separated from the test implemen-
tation, the test cases design can be reused over different ontologies instead of
being generated from scratch.

Fig. 1. Test-last approach Fig. 2. Test-first approach

5 Evaluation

To provide an assessment of the validity of the proposed testing framework
and its usability in an ontology development project, an empirical analysis has
been carried out using three different ontologies, being the VICINITY Core10

9 https://bitbucket.org/malefort/scone.
10 http://iot.linkeddata.es/def/core/.

https://bitbucket.org/malefort/scone
http://iot.linkeddata.es/def/core/


126 A. Fernández-Izquierdo and R. Garćıa-Castro

(Core11), the Web of Things12 (WoT) and the WoT mappings13 (Mappings)
ontologies, which are currently under development in the VICINITY project14.
To perform such assessment, we have integrated the proposed testing activities
into the ontology development process, which was iterative and followed agile
principles. Altogether, we gathered 123 ontology requirements, from which 16
were associated to the WoT ontology, 92 to the Core ontology and 15 to the
Mappings ontology.

We generated test cases for those ontology requirements that were planned
for the different sprints and analysed them to obtain information about their
categorization. Table 6 shows the percentage of requirements categorized with
one or more of the requirement types identified in Sect. 3. This table gives us
information about the complexity of the requirements. We found that most of the
requirements are related to only one type of requirement, i.e., relation between
concepts.

Table 6. Percentage of requirements whose desired behaviour is categorized with one
or more types

Requirement categorization Core WoT Mappings Total

One type 87% 94% 100% 89%

Two types 13% 6% 0% 11%

More than two types 0% 0% 0% 0%

Table 7 shows the number of requirements which belong to each requirement
type. We found that the requirements related to hierarchies and to relations
between concepts are the most common requirements in our analysed ontologies.

The execution of the test cases following this approach allows us to be aware
of the test results, including the number of tests that are passed, not passed
and undefined. In addition to this, the storage of the test cases in RDF with
metadata permits an automated execution of test cases as well as maintaining the
traceability between the test cases, the ontology and the requirements. Because
of this traceability, we are able to calculate metrics such as the percentage of
tested terms and the percentage of formalized requirements, which can provide
us with an outlook about the situation of the testing process. This information
is useful for the developers to be aware about which requirements are fulfilled by
the ontologies and which ones are not implemented yet, as well as about which
ontology terms are present in the tests. To calculate the tested terms we defined
a metric called tested terms coverage (TTCOV), which is calculated using
the expression

TTCOV (S,O) =
NTestedT (S)

NT (O)
(1)

11 During the development of this work part of the VICINITY Core ontology was
transferred to a new ontology.

12 http://iot.linkeddata.es/def/wot/.
13 http://iot.linkeddata.es/def/wot-mappings/.
14 http://vicinity2020.eu/vicinity/.

http://iot.linkeddata.es/def/wot/
http://iot.linkeddata.es/def/wot-mappings/
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Table 7. Number of requirements of each type in the analysed ontologies

Type of requirement Core WoT Mappings Total

T1 - Equivalence 0 0 0 0

T2 - Subsumption 35 5 1 41

T3 - Disjointness 0 0 0 0

T4 - Relation between two concepts 86 10 9 105

T5 - Symmetry 4 0 0 4

T6 - Maximum cardinality 0 0 1 1

T7 - Minimum cardinality 2 1 0 3

T8 - Exact cardinality 0 0 1 1

T9 - Intersection 1 0 1 1

T10 - Definition of an individual 11 0 0 11

where NTested(S) refers to the number of different terms in the set of tests S
and NT(O) refers to the number of terms defined in the ontology O.

To calculate the tested requirements we defined a metric called formalized
requirements coverage (FRCOV), which is calculated using the expression

FRCOV (R,S) =
NR(R)

NTests(S)
(2)

where NR(R) refers to the number of identified requirements and NTests(S)
refers to the number of tests cases generated.

Table 8 summarizes the results obtained after the execution of the test cases
in the last sprint of each ontology. All the requirements, their test cases and
results are published in the VICINITY portal15. The results show that, even
though the majority of the requirements are passed, there are several undefined
tests in the Core ontology. This is due to the fact that there are several terms
identified in the requirements which are not yet declared in the ontologies because
they have not been planned yet for any sprint. Additionally, the results also

Table 8. Metrics extracted from the test cases in their last sprint

Ontology Test results Tested
terms

Formalized
requirements

Passed Not passed Undefined

Core 59% 17% 24% 41% 100%

WoT 94% 6% 0% 53% 100%

Mappings 100% 0% 0% 83% 100%

Total 68% 14% 18% 49% 100%

15 http://vicinity.iot.linkeddata.es/vicinity/testing.html.

http://vicinity.iot.linkeddata.es/vicinity/testing.html
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show that both the Core and the WoT ontologies have requirements that are
not passed. Table 8 also determines that the tested terms do not exceed the
83%; this result is normal because there are terms that are not defined in the
requirements. These terms can be created from the addition of ontology design
patterns [6] or from the reuse of terms from other ontologies.

6 Conclusions and Future Work

In this paper we provide a testing framework composed of a set of activities that
can be integrated into different ontology development life-cycles. This framework
also provides a collection of test expressions to determine the desired behaviour
of the requirements. These test expressions were defined after an analysis of 248
requirements from different ontologies. If more requirements with new behaviours
are available, the set of test expressions will be extended to support them.

In addition to this, the storage of the tests in an RDF document allows us to
extract different metrics, such as the already mentioned TTCOV and FRCOV,
with the aim of better monitoring the ontology testing process. We expect that
adopting testing activities in the development process will allow ontology engi-
neers and users to be aware about the completeness of ontologies regarding their
requirements. Moreover, these testing activities can also be helpful for analysing
ontology conformance.

Future work will be directed to a more rigorous analysis of the requirement
types. We plan to conduct a lexico-syntactic analysis of the requirements, based
on the work presented by Daga et al. [3], in order to be able to identify more
enriched test expressions. Furthermore, due to the fact that the test cases analyse
the ontology status in different scenarios by adding several axioms, future work
will also be directed to support the identification of the reason of why a test
is failing. This would make the proposed testing framework helpful not only to
verify if all the requirements are satisfied, but also to explain what is left for the
ontology to fulfil the requirement.

Finally, we plan to analyse the feasibility and the benefits of the BDD app-
roach applied to ontologies; we consider that this approach may help ontology
engineers to provide ontologies more aligned with user expectations. Addition-
ally, in this work we focused on OWL ontologies, and we intend to provide
support for ontologies in other languages, e.g., RDF Schema.
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